digiSoft AgroMeteorology Science

9/16/2021

MANUAL FOR MODIFIED CAMDT/DSSAT CROP YIELD PREDICTION MODEL

Bradwell Garanganga & Trymore Nyakutambwa DIGITRON BUSINESS SYSTEMS

T: +263 242 793691-4 M: +263 772 220330 (WhatsApp) M: +263 784 996 727 (WhatsApp)

E: <u>bjgaranganga@digitron.co.zw</u> E: <u>trymoren@digitron.co.zw</u>

Table of Contents

ACKNOW	LEDGEMENT	0
PREFACE		0
USER GUI	IDE 1	1
FORM/	ATTING & EXPORTING DAILY CLIMATOLOGICAL DATA FROM NASA WEBSITE INTO CAMD	DT/DSSAT
FORM/	ATS	1
INTE	RODUCTION	
i.	CAMDT Output Weather Files	1
ii.	. Temporal Downscaling: FResampler versus Stochastic Disaggregation	2
iii	i. CAMDT Weather Tables ready for DSSAT ingestion	3
iv	v. Introduction to DSSAT crop Modelling	6
v.	Overall description of the DSSAT cropping system model	7
SECT	TION A. REQUIRED SOFTWARE TOOLS	9
SECT	TION B. FORMATTING NASA WEATHER DATA FOR CAMDT WTD FILE	9
a.	ACCESS TO NASA CLIMATOLOGICAL DATA, STREAMLINING AND REFORMATTING FOR INGES	TING INTO
C/	AMDT MODEL	9
b.	. PARAMETER(S):	9
с.	STEPS TO STREAMLINE AND REFORMAT DATA	10
SECT	TION C. *.WTH YEARLY FILES	22
CON	ICLUDING REMARK	25
REFE	ERENCES	
		20
USER GUI	DE 2	
RUNNI	NG CAMDT GUI	
1.	INTRODUCTION	
i.	Stochastic Disag (Parametric)	27
ii.	. FResampler (Non-Parametric)	27
2.	Running CAMDT in PYTHON	28
З.	Steps to download and install CAMDT	
4.	CAMDT Limitations	
5		30
J.	CAMDT Folders Setun	30
	Weather Data Prenaration	30
	I. Rice Automated Modelling vs Other Crops' Manual Modelling	32
IV	/. Running Rice Crop Yield Simulation	
Refe	erences:	
USER GUI	IDE 3	52
RUNNI	NG CAMDT/DSSAT CROP MODELLING FOR NON-RICE CEREALS	
1.		
2.	Rice Automated Modelling vs Other Crops' Manual Modellina	
3.	Running RICE Automated Dummy Model at CMD SHELL	
۵. ۵	Use VS Code to Create a CAMDT Cron YIFID txt file	59 58
	Bunning Cron Modelling for A5AN-20BN tersile	
э. г	Concepto CAMPT from Viold Graphs	
υ.		

Copyright © 2021 Digitron Business Systems

ACKNOWLEDGEMENT

This manual is an adaptation of the Climate Agriculture Modelling Decision Tool (CAMDT). We are grateful to IRI for availing CAMDT and subsequent consultations on it from which we were able to make some modifications to suit current usage. At the same time, we acknowledge the developers of Decision Support System for Agrotechnology Transfer (DSSAT) for availing their crop-modelling tool. In this work, CAMDT is used as a wrapper of DSSAT.

PREFACE

Developing crop capability prediction methodologies is an important piece in the process to capacitate the producers and users of climate information as part of the decision support system in agriculture and food security. Decision support systems informed by crop yield prediction models require a number of processes: data collection and analytics; techniques development; and how the methodology is applied, i.e. user guide. This manual has three User Guides (User Guide 1, User Guide 2 and User Guide 3) that can be referred to either separately or also in tandem, the latter of which leads to the generation of crop yields. These User Guides are presented as part of the manual.

USER GUIDE 1

FORMATTING & EXPORTING DAILY CLIMATOLOGICAL DATA FROM NASA WEBSITE INTO CAMDT/DSSAT FORMATS

Authors: Bradwell J Garanganga and Trymore Nyakutambwa

CAMDT	Climate Agriculture Modelling and Decision Tool
CSM	Cropping System Model
DSSAT	Decision Support System for Agrotechnology Transfer
GUI	Graphical User Interface
NDJ	November, December, January season
IRI	International Research Institute for Climate and Society
NASA	National Aeronautics and Space Administration of USA
WTD	File with daily Weather data aggregated over many years
WTH	File with one Year's daily Weather data

Acronyms

INTRODUCTION

Crop capability prediction modelling platforms used in this User Guide are the Climate-Agriculture-Modelling and Decision Tool (CAMDT) as the weather generator, for the Decision Support System for Agrotechnology Transfer (DSSAT), the crop weather simulation model. CAMDT/ DSSAT platforms are very sensitive to the data formats. In this regard, there will be need to manipulate the climatological data for exporting into CAMDT/DSSAT programmes to be compatible for ingestion into these environments. For instance, using the example of data downloaded from NASA (National Aeronautics and Space Administration) website (<u>https://power.larc.nasa.gov/data-access-viewer/</u>) there is need for downloaded daily climatological data to be manipulated into and across both MS Excel and CSV environments. The authors have already reformatted climatological data from MAPAI, Mozambique, provided with this note. The necessary steps to be followed in order to make the data formats compatible with CAMDT/DSSAT are presented in the following sections.

i. CAMDT Output Weather Files

CAMDT **PYTHON** software code is responsible for reading a weather station's historical weather data (for so many years USUALLY >= 30) and combine it using **n** realisations (USUALLY >= 30) to generate, via HINDCAST or FORECAST, daily Weather patterns for the desired planting season or horizon. This horizon usually spans from November for NDJ planting season, to June (Harvesting) for Southern Africa. **CAMDT** therefore generates daily weather patterns for November to June (8-months block).

This 8-months block weather pattern is consumed by **DSSAT** as the crop modelling software's weather input component. The four (4) tables below show weather files output by **CAMDT** for the desired simulation horizon (Planting = November 2009 to harvesting = July 2010, the temporal downscaling method used is **Forecast Resampler (FResampler)**, which automatically executes 100 realisations. *See tables Table 1.a, 1.b, 2.a and 2.b.*

ii. Temporal Downscaling: FResampler versus Stochastic Disaggregation

CAMDT uses Two (2) methods for Downscaling probabilistic Seasonal Climate Forecasts (SCF) for decision support in agriculture: **1. Parametric** and **2. Non-parametric**

Highlights

- Non-parametric performs like the parametric method in downscaling probabilistic climate forecast.
- Non-parametric method is sensitive to data volume and sampling size.
- The parametric method is sensitive to data volume and type of rainfall information.
- Downscaling median not enough; downscaling distribution sampling points is needed.

Seasonal climate forecasts (SCF) are produced operationally in tercile-probabilities of the most likely categories, e.g., Below-, Near- and Above-normal rainfall. Inherently, these are difficult to translate into information useful for decision support in agriculture. For example, probabilistic SCF must first be downscaled to daily weather realizations to link with process-based crop models, a tedious process, especially for non-technical users. Here, we present two approaches for downscaling probabilistic seasonal climate forecasts – a Parametric method, **predictWTD**, and a Non-parametric method, **FResampler1**. The **predictWTD**, which is based on a conditional stochastic weather generator, is not very sensitive to types of rainfall information (amount, frequency or intensity) in constraining or conditioning the stochastic weather generator. Conditioning the stochastic weather generator on both rainfall frequency and rainfall intensity distorted the distribution of the downscaled seasonal rainfall total. Both **predictWTD** and **FResampler1** are sensitive to the length of climate data, especially for a wet SCF; climate data longer than 30 years is suitable for reproducing the theoretical distribution of SCF. FResampler1 performs as well as **predictWTD** in downscaling probabilistic SCF, however, it requires the generation of more realizations (~100), to ensure stable simulations of the seasonal rainfall total distributions.

<Figure 1.> Sample Parametric or Stochastic Disag (predictWTD) setup when running CAMDT

In this User Guide, a sample of 37 years was downloaded from NASA (1984 to 2020) and used in the simulations. The four (4) tables below show examples of **Stochastic Disag** generated weather data for 37 years, downscaled to daily values for Nov 2009 to June 2010 being the simulation horizon.

iii. CAMDT Weather Tables ready for DSSAT ingestion

<Figure 2.> Flow of Weather Data from NASA or Weather Station Observation to DSSAT

<Table 1.a> CAMDT generated daily Weather pattern for November and December (planting season is Nov 2009 to January 2010) – Freesampler Iteration # 0087

I٢	*WEATH	ER DAT	A : BE	EIT								~
	<pre> @ INSI BEIT @ DATE 09305 09306 09307 09308 09310 09311 09312 09313 09314 09315 09316 09317 09318 - - - -</pre>	-12. SRAD 16.9 26.7 25.1 24.5 23.0 27.1 18.5 24.7 28.7 21.5 27.9 14.8 27.7 21.6	LAT 200 29.9 33.7 31.1 32.3 34.8 39.1 37.0 36.2 40.2 34.5 38.4 40.0 38.2	LONG 30.000 TMIN 17.7 17.1 17.6 16.9 18.2 19.8 21.5 22.6 21.5 24.3 21.5 24.3 21.6 25.2 23.3 25.1	ELEV 457 RAIN 1.8 0.4 0.2 0.0 0.1 1.3 1.2 0.5 0.8 1.1 4.4 1.4 0.5	TAV 27.3	АМР 1.6	REFHT -99.0	WNDHT -99.0			
	09353 09354 09355 09356 09357 09358 09359 09360 09361 09362 09363 09364 09365	27.2 28.0 23.8 29.3 28.4 29.6 15.8 23.4 19.9 27.4 24.6 22.3	34.5 38.1 34.2 34.9 36.2 37.7 39.8 36.6 33.0 36.7 37.4 34.3 33.1	18.5 20.3 20.5 18.8 20.4 21.9 22.1 23.6 23.0 23.6 24.4 23.8 23.9	0.0 0.0 0.0 0.0 0.0 0.0 6.3 2.9 2.0 2.2 2.2 2.2 3.5							× •
	0088090)1.WTH *						22	6	Read	Ovr Bloc	k Sync

<Table 1.b> **CAMDT** generated daily Weather pattern for November and December (planting season is Nov 2009 to January 2010) – Freesampler Iteration # 0088

<Table 2.a> **CAMDT** generated daily Weather pattern for January to June (planting to harvesting: Nov 2009 to July 2010) – Freesampler Iteration # 0087

*WEATHER DATA : BEIT	7
@ INSI LAT LONG ELEV TAV AN BEIT -12.200 30.000 457 27.3 1 @ DATE SRAD TMAX TMIN RAIN 10001 19.4 32.2 23.8 8.6 10002 15.4 31.1 21.2 6.7 10003 15.7 34.8 20.4 2.1 10004 25.6 35.6 22.3 4.8 10005 13.7 23.5 18.9 12.2 10006 18.6 30.1 18.7 0.3 10007 21.8 33.0 22.7 0.4 10008 28.6 34.8 20.5 0.0 10010 29.7 37.7 22.5 0.4 10011 17.6 33.6 21.8 15.6 10012 8.8 29.5 20.6 22.8 10013 13.0 27.6 20.2 11.1 10014 18.1	MP REFHT WNDHT .6 -99.0 -99.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~
[] <	
	33 5 Read Ovr Block S C

<Table 2.b> **CAMDT** generated daily Weather pattern for January to June (planting to harvesting: Nov 2009 to July 2010) – Freesampler Iteration # 0088

iv. Introduction to DSSAT crop Modelling

Information needs for agricultural decision making at all levels are increasing rapidly due to increased demands for agricultural products and increased pressures on land, water, and other natural resources. The generation of new data through traditional agronomic research methods and its publication are not sufficient to meet these increasing needs. Traditional agronomic experiments are conducted at particular points in time and space, making results site- and season-specific, time consuming and expensive. Unless new data and research findings are put into formats that are relevant and easily accessible, they may not be used effectively. The Decision Support System for Agro-Technology transfer (**DSSAT**) was originally developed by an international network of scientists, cooperating in the International Benchmark Sites Network for Agrotechnology Transfer

project (IBSNAT, 1993; Tsuji, 1998; Uehara, 1998; Jones et al., 1998), to facilitate the application of crop models in a systems approach to agronomic research.

The aims of the DSSAT - CSM are:

- 1. to simulate monocrop production systems considering **weather**, **genetics**, **soil water**, **soil carbon and nitrogen**, **and management** in single or multiple seasons and in crop rotations at any location where minimum inputs are provided,
- 2. to provide a platform for easily incorporating modules for other abiotic and biotic factors, such as soil phosphorus and plant diseases,
- 3. to provide a platform that allows one to easily compare alternative modules for specific components to facilitate model improvement, evolution, and documentation, and
- 4. to provide a capability for easily introducing the **CSM** into additional application programs in a modular, well documented way.

v. Overall description of the DSSAT cropping system model

The **DSSAT-CSM** simulates growth, development and yield of a crop growing on a uniform area of land under prescribed or simulated management as well as the changes in soil water, carbon, and nitrogen that take place under the cropping system over time. The **DSSAT-CSM** is structured using the modular approach described by (Jones et al. (2001) and Porter et al. (2000)).

<Figure 3.> Overview of DSSAT Inputs and Modules

8

SECTION A. REQUIRED SOFTWARE TOOLS

- 1. MS Excel
- 2. digiSoft Excel Sheet_Splitting_Template.xlsm
- 3. Visual Studio Code Editor
- 4. Python v3.8.x
- 5. Bulk Rename Utility

SECTION B. FORMATTING NASA WEATHER DATA FOR CAMDT WTD FILE

1. Start with downloading a country's NASA daily climatological data (CSV or Excel format),

a. ACCESS TO NASA CLIMATOLOGICAL DATA, STREAMLINING AND REFORMATTING FOR INGESTING INTO CAMDT MODEL

In order to access NASA data, one needs to visit:

https://power.larc.nasa.gov/data-access-viewer/

Note that NASA climatological data has twelve parameters.

NASA/POWER SRB/FLASHFlux/MERRA2/GEOS 5.12.4 (FP-IT) 0.5 x 0.5 Degree Daily Averaged Data

Dates (month/day/year): 01/01/1985 through 03/05/2015

Location: Latitude -17.7982 Longitude 31.0774

Elevation from MERRA-2: Average for 1/2x1/2 degree lat/lon region = 1351.06 meters Site = na

Climate zone: na (reference Briggs et al: http://www.energycodes.gov)

Value for missing model data cannot be computed or out of model availability range: -999

b. PARAMETER(S):

T2MDEW	MERRA2 1/2x1/2 Dew/Frost Point at 2 Meters (C)
T2M_MAX	MERRA2 1/2x1/2 Maximum Temperature at 2 Meters (C)
T2M_MIN	MERRA2 1/2x1/2 Minimum Temperature at 2 Meters (C)
T2M_RANGE	MERRA2 1/2x1/2 Temperature Range at 2 Meters (C)
QV2M	MERRA2 1/2x1/2 Specific Humidity at 2 Meters (g/kg)
T2MWET	MERRA2 1/2x1/2 Wet Bulb Temperature at 2 Meters (C)
TS	MERRA2 1/2x1/2 Earth Skin Temperature (C)
ALLSKY_SFC_LW_DWN	MERRA2 1/2x1/2 All Sky Surface Longwave Downward Irradiance (W/m^2)
YEAR MO DY T2M_RANGE QV2M RH2M PS ALLSKY SF	TS T2MDEW T2MWET T2M_MAX T2M_MIN T2M PRECTOT

-END HEADER-

1985 01 0115.9321.9211.9011.9129.0013.0820.600.1710.1557.9286.708.031985 01 0216.1121.8710.9110.9128.6212.5020.340.159.4955.1186.768.511985 01 0312.1522.1514.5714.5727.4915.3320.741.3712.0568.1486.759.371985 01 049.6322.2816.3516.3527.0817.4521.161.7013.4674.0486.709.24

c. STEPS TO STREAMLINE AND REFORMAT DATA

CAMDT has a very easy format for data ingestion: first row is just geography i.e. latitude, longitude, elevation. @ INSI LAT LONG ELEV TAV AMP REFHT WNDHT

PILI 13.567 126.250 89 27.3 1.6 -99.0 -99.0

Actual data format for ingesting into CAMDT is:

@ DATE SRAD TMAX TMIN RAIN

Columns are read for Date, Radiation, Temperature Max, Temperature Min and Rainfall. Whereas, NASA data has many different parameters. In this case, NASA data includes: Year, Month, Day Tdew (we delete) temp max, temp min, etc i.e.:

1985 01 01 15.93 21.92 11.90 11.91 29.00 13.08 20.60 0.17 10.15 57.92 86.70 8.03 1985 01 02 16.11 21.87 10.91 10.91 28.62 12.50 20.34 0.15 9.49

But we only want to extract data points in the following columns: Year, Month, Day, --,Tmax, Tmin, --, --, --, radiation, --, --, rainfall. Two dashes separated by comma represent column. Once this is done the reformatted NASA data should read seamlessly into CAMDT, so the errors will disappear.

We need, therefore, to select SRad (radiation), Tmax, Tmin, Prec (Rainfall) and reformat NASA data into the generic CAMDT data format. This requires that we trim off (or delete) the columns with the unnecessary variables. This we can do in three steps.

<u>STEP 1</u>

From NASA data sets, we only want to extract data points in the following columns: --,--, day, --, Tmax, Tmin, --, --, --, radiation,--, --, rainfall. Remember to log in the year and month in some convenient row which will not be read by CAMDT.

--,--, day 1, --Tmax, Tmin, --, --, --, radiation,--, --, --, rainfall. --,--,day 2, --Tmax, Tmin, --, --, --, radiation,--, --, --, rainfall. --,--,day 3, --Tmax, Tmin, --, --, --, radiation,--, --, --, rainfall.

Take NOTE that dashes (--) and commas (,) have been used above only in order to illustrate better the issues we are trying to resolve. The data columns will NOT have these dashes or commas.

<u>STEP 2</u>

Data should read:

DATE, TMAX, TMIN, SRAD, PRECIP (I.E. RANFALL) DAY 1, TMAX, TMIN, SRAD, PRECIP.

<u>STEP 3</u>

Move column 4 (Radiation) to column 2.

Once completing the Third Step NASA dataset is now in the same format as CAMDT as per following sample:

DATE, SRAD, TMAX, TMIN, RAIN

0000116.428.619.70.00000212.527.018.40.0000037.524.019.72.2

- 2. Each Meteorological Station will have its own individual Excel worksheet,
- 3. Open the NASA Workbook and go the Worksheet for the desired Meteorological Station
- 4. The data format in Excel should look like below, Fig. A.1:
- 5. Select the desired Weather Station's Worksheet, e.g. CHANGALANE
- 6. Press Ctrl + A to select all data columns and rows in that Worksheet
- 7. Press Ctrl + C to copy all the selected data on the Worksheet
- 8. Open a New Excel Workbook and Paste the data copied from CHAGALANE Worksheet
- 9. Save that Workbook as CHANGALANE.xlsx

đ	3 5-		MZ of NASA	Data sets-1	xls [Compa	atibility Mode] -	Excel (Produc	t Activation	F 🗄			
F	ile Hor	ne Insert	Page La Fo	muli Data	Review V	iew Develop K	utools Kuto	ols Add-ins	Team	? Tell me	. A	Share
Pa Clij	ste 💉	Calibri B I U E + 20 For	• 11 • • A* A • <u>A</u> • •t] = = = = : • = • = : • = • = : • = • = : • = • = :	■ 🖬 + ≫ + hent 5	General → \$ → % > *.00 .00 Number ा₅	E Conditio Format a Cell Style	onal Formatt as Table * es * Styles	ing + ₩	Insert + Delete + Format + Cells	P Editing	~
Q	3	T	× ×	fx								*
1	А	В	с	D		E	F	G	н	I.	1	
1												
2	LAT	LON	YEAR	DOY	ALLSKY_S	FC_SW_DWN	T2M_MAX	T2M_MIN	PRECTOT			
3	-26.3	32.18301	1981	3		-99	35.83	22,95	7.01			
4	-26.3	32.18301	1981	4		-99	37.13	23.05	24.92	1	_	
5	-26.3	32.18301	1981	5		-99	29.45	21.42	2.28	5		
6	-26.3	32.18301	1981	6		-99	28.84	21.39	0.8	1	_	
7	-26.3	32.18301	1981	7		-99	30.47	21.3	2.3			
8	-26.3	32.18301	1981	8		-99	34.31	21.91	1.66	5	_	
9	-26.3	32.18301	1981	9		-99	26.5	20.57	19.24	1		
10	-26.3	32.18301	1981	10		-99	29.3	19.52	6.19		_	
11	-26.3	32.18301	1981	11		-99	32.84	20.62	0.77		_	
12	-26.3	32.18301	1981	12		-99	33.82	22.81	3.42	2	_	
13	-26.3	32.18301	1981	13		-99	33.34	24.66	5.78			
14	-26.3	32.18301	1981	14		-99	33.28	22.55	2.28	1	_	
15	-26.3	32.18301	1981	15		-99	31.46	21.39	0.68		_	
16	-26.3	32.18301	1981	16		-99	33.8	21.35	0.67	1		
	4 F		LANGUENE	CHAN	GALANE	NAMAACHA	MOAM	BA BEL	AVIS"	÷ :	4	•
Rea	dy 🛅			R.			E		四	- 1	+	100%

Fig. A.1 Sample of daily climatological data from NASA website

F	ile	Hom	ne Insert I	Page La: For	mula Data	Review View Develop K	utools Kuto	ols Add-ins	Team 🖸	Tell me	
Woi Vi	kbook ews *	Show	Zoom	100% Zoo Sele	m to ction	New Window 🔤 🖺 Arrange All 🚺 📑 Freeze Panes 🔻 🔲 ট	Switch Windows *	Macros Na	avigation	Reading ayout *	
				Zoom		Window		Macros	Kutools	Ea l	
Q	Q8 $\overline{}$: $\times \checkmark f_{x}$										
	А		в	с	D	E	F	G	н	1	
2	LAT		LON	YEAR	DOY	ALLSKY_SFC_SW_DWN	T2M_MAX	T2M_MIN	PRECTOT		
3	-2	6.3	32.18301	1981	3	-99	35.83	22.95	7.01		
4	-2	6.3	32.18301	1981	4	-99	37.13	23.05	24.92		
5	-2	6.3	32.18301	1981	5	-99	29.45	21.42	2.28		
6	-2	6.3	32.18301	1981	6	-99	28.84	21.39	0.8		
7	-2	6.3	32.18301	1981	7	-99	30.47	21.3	2.3		
8	-2	6.3	32.18301	1981	8	-99	34.31	21.91	1.66		
9	-2	6.3	32.18301	1981	9	-99	26.5	20.57	19.24		
10	-2	6.3	32.18301	1981	10	-99	29.3	19.52	6.19		
11	-2	6.3	32.18301	1981	11	-99	32.84	20.62	0.77		
12	-2	6.3	32.18301	1981	12	-99	33.82	22.81	3.42		
13	-2	26.3	32.18301	1981	13	-99	33.34	24.66	5.78		
14	-2	26.3	32.18301	1981	14	-99	33.28	22.55	2.28		
15	-2	26.3	32.18301	1981	15	-99	31.46	21.39	0.68		
16	-2	26.3	32.18301	1981	16	-99	33.8	21.35	0.67		

Fig. A.2 Sample of Mozambique's CHANGALANE daily climatological data from NASA website

10. Insert 2 columns between Column D and Column E as below, Fig. A.3:

F	File	Home	e Insert I	Page Laː Foi	rmula Data	Review View De	evelop Kuto	ols Kut	ools Add-ir	is Team	n 🛛 🛛 Tell m	1e 84	Share
Woi Vi	∎ rkbook ews ▼	Show	Zoom	100% Zoo Sele	om to ection	New Window 📄 Arrange All 📄 Freeze Panes + 📄 Windo	CC C	witch dows +	Macros Macros	lavigatio Kut	on Reading Layout) - -	~
E2	2			X V	f _∞ =TE	XT(D2,"000")							~
	А		в	С	D	E	F		G		н	I.	1
1	LAT	L	.ON	YEAR	DOY	DOY Formatted	@ DATE	ALLSKY	_SFC_SW_	DWN [·]	T2M_MAX	T2M_MIN	PREC
2	-2	6.3	32.18301	1981	3	003				-99	35.83	22.95	
3	-2	6.3	32.18301	1981	4					-99	37.13	23.05	:
4	-2	6.3	32.18301	1981	5					-99	29.45	21.42	
5	-2	6.3	32.18301	1981	6					-99	28.84	21.39	
6	-2	6.3	32.18301	1981	7					-99	30.47	21.3	
7	-2	6.3	32.18301	1981	8					-99	34.31	21.91	
8	-2	6.3	32.18301	1981	9					-99	26.5	20.57	1
9	-2	6.3	32.18301	1981	10					-99	29.3	19.52	

Fig. A.3 Sample of daily climatological data from NASA website with two additional columns (E & F)

E2	2		×	fx =TE	EXT(D2,"000")							~
Â	A	В	С	D	E	F	G	Н	Î	J	к	
1	LAT	LON	YEAR	DOY	DOY Formatted	@ DATE	ALLSKY_SFC_SW_DWN	T2M_MAX	T2M_MIN	PRECTOT		
2	-26.3	32.18301	1981	3	003		-99	35.83	22.95	7.01		
3	-26.3	32.18301	1981	4	004		-99	37.13	23.05	24.92		
4	-26.3	32.18301	1981	5	005		-99	29.45	21.42	2.28		
5	-26.3	32.18301	1981	6	006		-99	28.84	21.39	0.8		
6	-26.3	32.18301	1981	7	007		-99	30.47	21.3	2.3		
7	-26.3	32.18301	1981	8	008		-99	34.31	21.91	1.66		
8	-26.3	32.18301	1981	9	009		-99	26.5	20.57	19.24		
9	-26.3	32.18301	1981	10	010		-99	29.3	19.52	6.19		
10	-26.3	32.18301	1981	11	011		-99	32.84	20.62	0.77		
11	-26.3	32.18301	1981	12	012		-99	33.82	22.81	3.42		
12	-26.3	32.18301	1981	13	013		-99	33.34	24.66	5.78		
13	-26.3	32.18301	1981	14	014		-99	33.28	22.55	2.28		
14	-26.3	32.18301	1981	15	015		-99	31.46	21.39	0.68		
15	-26.3	32.18301	1981	16	016		-99	33.8	21.35	0.67		

11. Insert formula in **E3** as shown above (=TEXT(D3,"000"), drag or copy the formula in **E3** all the way down to the last row, as Fig. A.4:

Fig. A.4 Sample of daily climatological data from NASA website showing DOY formatted column

12. Go to Cell **F3**, type the formula as shown below, drag or copy the formula in **F3** all the way down to the last row:

	Workbook V	iews		Zoom		Wir	ndow Ma	cros k	Cutools	G.		^
F2	2	• : :	× 🗸	<i>f</i> _x =C	2&E2							٣
	А	В	С	D	E	F	G	н	1	J	к	
1	LAT	LON	YEAR	DOY	DOY Formatted	@ DATE	ALLSKY_SFC_SW_DWN	T2M_MAX	T2M_MIN	PRECTOT][]
2	-26.3	32.18301	1981	3	003	1981003	-99	35.83	22.95	7.01		
3	-26.3	32.18301	1981	4	004		-99	37.13	23.05	24.92		
4	-26.3	32.18301	1981	5	005		-99	29.45	21.42	2.28		
5	-26.3	32.18301	1981	6	006		-99	28.84	21.39	0.8		
6	-26.3	32.18301	1981	7	007		-99	30.47	21.3	2.3		
7	-26.3	32.18301	1981	8	008		-99	34.31	21.91	1.66		
8	-26.3	32.18301	1981	9	009		-99	26.5	20.57	19.24		
9	-26.3	32.18301	1981	10	010		-99	29.3	19.52	6.19		

Fig. A.5 Sample of daily climatological data from NASA website with @ DATE formula, column F.

The Worksheet should look like below, Fig A.6:

F2	2	-	X V	<i>f</i> _x =C	2&E2							~
1	А	B	С	D	E	F	G	н	1	J	к	
1	LAT	LON	YEAR	DOY	DOY Formatted	@ DATE	ALLSKY_SFC_SW_DWN	T2M_MAX	T2M_MIN	PRECTOT		
2	-26.3	32.18301	1981	3	003	1981003	-99	35.83	22.95	7.01		
3	-26.3	32.18301	1981	4	004	1981004	-99	37.13	23.05	24.92		
4	-26.3	32.18301	1981	5	005	1981005	-99	29.45	21.42	2.28		
5	-26.3	32.18301	1981	6	006	1981006	-99	28.84	21.39	0.8		
6	-26.3	32.18301	1981	7	007	1981007	-99	30.47	21.3	2.3		
7	-26.3	32.18301	1981	8	008	1981008	-99	34.31	21.91	1.66		
8	-26.3	32.18301	1981	9	009	1981009	-99	26.5	20.57	19.24		
9	- <mark>26.</mark> 3	32.18301	1981	10	010	1981010	-99	29.3	19.52	6.19		
10	-26.3	32.18301	1981	11	011	1981011	-99	32.84	20.62	0.77		
11	-26.3	32.18301	1981	12	012	1981012	-99	33.82	22,81	3.42		
12	-26.3	32.18301	1981	13	013	1981013	-99	33.34	24.66	5.78		
13	-26.3	32.18301	1981	14	014	1981014	-99	33.28	22.55	2.28		

Fig. A.6 Sample of daily climatological data from NASA website with @ DATE formula, column F up to last row. **13.** Highlight columns **G** to **J**, Click Right mouse button inside the selected range, choose Number then decrease Decimal Places: to 1. See Figure A.7 below:

F	G	Н	1	J	К	
@ DATE	ALLSKY_SFC_SW_DWN	T2M_MAX	T2M_MIN	PRECTOT		L
1981003	-99	35.8	23.0	7.0		
1981004	-99	37.1	23.1	24.9		
1981005	-99	29.5	21.4	2.3		
1981006	-99	28.8	21.4	0.8		
1981007	-99	30.5	21.3	2.3		
1981008	-99	34.3	21.9	1.7		
1981009	-99	26.5	20.6	19.2		
1981010	-99	29.3	19.5	6.2		
1981011	-99	32.8	20.6	0.8		
1981012	-99	33.8	22.8	3.4		
1981013	-99	33.3	24.7	5.8		
1981014	-99	33.3	22.6	2.3		
1981015	-99	31.5	21.4	0.7		
1981016	-99	33.8	21.4	0.7		
1981017	-99	36.8	22.1	0.1		

Fig. A.7 Daily climatological data formatted to 1 decimal place.

14. Now Copy Column F to Column J by highlighting on the Column names, copy the selected columns, Open a New Sheet in the same Excel Workbook, highlight column A, click on the little arrow below the <Paste Button>, Select <Paste Special> then choose <Values and Number Formatting>, Press <OK> to paste

BS)	-	×	~	f _x	-	99			
	А		В				с	D	E	F
1										
2	@ DATE	ALLSKY	_SFC_	SW	DWN	T2M	MAX	T2M_MIN	PRECTOT	
3	1981003				-99		33.26	23.45	3.41	
4	1981004				-99		32.86	22.91	0.05	
5	1981005				-99		33.57	21.74	0.48	
6	1981006				-99		33.34	21.93	3.23	
7	1981007				-99		30.83	22.42	6.93	
8	1981008				-99		33.11	22.41	1.63	
9	1981009				-99		32.81	22.4	17.74	
10	1981010				-99		30.47	23.19	2.21	
11	1981011				-99		30.16	22.59	1.43	
12	1981012				-99		30.7	23.87	2.94	
13	1981013				-99		33.39	23.58	11.21	
14	1981014				-99		30.73	24.07	21.8	
15	1981015				-99		27.49	24.02	32.18	
16	1981016				-99		29.28	22.6	22.37	

Fig. A.7.1 Sample of daily climatological data from NASA website with column headers of parameters.

Rename the columns headers @ DATE, SRAD, TMAX, TMIN and RAIN as below and delete the blank row above the column headers (Excel sheet row 1), Fig. A.7.2:

	← 💞 Format Painter											
	Clipboar	d	Es .	Font		Ea.						
D1		-	×	£								
				<i>Jx</i>								
	Α	В	С	D	E	F						
1												
2	@ DATE	SRAD	TMAX	TMIN	RAIN							
З	1981003	-99	33.26	23.45	3.41							
4	1981004	-99	32.86	22.91	0.05							
5	1981005	-99	33.57	21.74	0.48							
6	1981006	-99	33.34	21.93	3.23							
7	1981007	-99	30.83	22.42	6.93							
8	1981008	-99	33.11	22.41	1.63							
9	1981009	-99	32.81	22.4	17.74							
10	1981010	-99	30.47	23.19	2.21							
11	1981011	-99	30.16	22.59	1.43							
12	1981012	-99	30.7	23.87	2.94							
13	1981013	-99	33.39	23.58	11.21							

Fig. A.7.2 Sample of daily climatological data from NASA website with new column headers of parameters.

** NOTE: Because DSSAT/CAMDT do not allow missing data (as usually represented by-99). From our inspection, SRAD is missing from 1981 to most of 1983 perhaps due to equipment failure. Therefore, it is more convenient to start Observation year with 1984. Carefully inspect the rest of the data entries for all Years (e.g. 1984 to 2019) for -99 values and change to extrapolated/interpolated values based on the values of nearest neighbours i.e. surrounding the -99. Ensure that your data set will not have -99; otherwise CAMDT will not run!

- Export the desired Excel Sheet, e.g. MAPAI to COMMA SEPARATED CSV (MAPAI, a Meteorological Station in Mozambique which has been manipulated and formatted to be compatible with CAMDT/DSSAT)
- 2. Open CSV into Excel and format all 4 columns to number, to 1 decimal point
- **3.** Export from Excel formatted to "Formatted (space delimited)" (*.prn) and choose "Yes" for "Maintaining format?", saving it as MAPA.PRN
- **4. a.** Open MAPA.PRN using Microsoft VS Code Editor and Align all columns (download VS Code if not installed on your computer)

UnAligned column Headers

_								
3	4	File Edit Se	lection Viev	/ Go R	un Termi	nal Help		MAPA_1.prn - Visual Studio Code
	G	≡ mapa_1.	prn ×	SQLQuery	3● ≣	MAPA.prn	•	
		C: > CAMD	r>wd> ≣	MAPA_1.pi	'n			
	\cap		Ø DATE SR	AD T_	MAX T_	MIN RA	IN	
	\sim	2	1984001	27.5	38.3	23.7	0.0	
			1984002	30.1	40.1	24.9	2.9	
	മ		1984003	9.8	31.2	22.9	11.0	
	0		1984004	28.2	35.3	21.1	0.3	
			1984005	28.3	36.0	21.7	0.3	
			1984006	25.5	36.4	21.9	0.1	
			1984007	27.6	38.0	23.0	0.0	
			1984008	25.8	37.1	23.3	1.4	
	Щ	10	1984009	25.0	36.8	23.5	0.1	
		11	1984010	24.1	37.5	24.0	2.2	
-								

1 space before DATE column

Fig. A.11.1a Sample of daily climatological data Unaligned MAPA.PRN from Excel CSV

b. Place the cursor on row 2 to the left of the first date and select the space as shown below, Fig. A.11.1.b:

×1 - I	File Edit	Selection	View	Go	Run	Terminal	Help	
c,	≣ MAP/	A_1.prn ×	≣ s	QLQue	ry8 •	≣ ма	.PA.prn	•
	C: > CA	MDT > WD 🛛	> ≣ №	IAPA_1	.prn			
0	1	@ DAT	e sra	D 1	r_max	T_MIN	RAI	N
\sim	2	19840	01	27.5	38	3.3 2	3.7	0.0
		19840	02	30.1	40).1 2	4.9	2.9
പ്പ	4	19840	03	9.8	31	.2 2	2.9	11.0
0	5	19840	04	28.2	35	5.3 2	1.1	0.3

Fig. A.11.1b Sample of part of process to Aligned MAPA.PRN from Excel CSV, selecting the space

c. Press Ctrl + Shift + Alt, then PgDn/PgUp or Down/Up Arrows to select up to 5000 lines as below, Fig A.11.1.c:

Fig. A.11.1c Sample of part of process to Aligned MAPA.PRN from Excel CSV, with the selected blocks of rows

d. Press Backspace to delete the space to the left of the DATE column data as shown below:

×1 - I	File Edit	Selection	View Go	Run Te	erminal H	elp
G	≣ MAP	A_1.prn ●	≣ SQLQ	uery8 鱼	≡ мара	prn 🔸
	C: > CA	MDT > WD >		_1.prn		
0	1	@ DATE	SRAD	T_MAX	T_MIN	RAIN
\sim	2	1984001	l 27.5	38.3	23.7	0.0
		1984002	2 30.1	40.1	24.9	2.9
പ്പം		1984003	9.8	31.2	22.9	11.0
0	5	1984004	28.2	35.3	21.1	0.3
	6	1984009	5 28.3	36.0	21.7	0.3
_ <mark>a</mark> >		1984006	j 25.5	36.4	21.9	0.1
		1984007	27.6	38.0	23.0	0.0

Fig. A.11.1d Sample of part of process to Aligned MAPA.PRN from Excel CSV, deleting the spaces left of DATE column for selected blocks of rows

e. Push SRAD Header to the right by 1 space (Not shown diagrammatically, i.e. no corresponding Fig A 11.1.e)

f. Place the cursor on row 2 below the @ character and mark 19 as shown below, Fig A.11.f:

⋈	File E	dit	Selection	View	Go	Run	Terminal	Help
G	≣ 1	MAPA	_1.prn ●	≣ s	QLQu	ery8 鱼	≣ ма	PA.prn 🔸
	C: >	CAN	NDT > WD 🕽	> ≣ M	APA_	1.prn		
0		1	@ DAT	e srai)	T_MAX	T_MIN	RAIN
\sim		2	198400	1 2	27.5	38.	.3 23	.7 0.0
			198400	2 3	30.1	40	.1 24	.9 2.9
୍ବର			198400	3	9.8	31	.2 22	.9 11.0

Fig. A.11.1.f Sample of part of process to Aligned MAPA.PRN from Excel CSV, with blocked 19 i.e. from left of DATE column for selected blocks of rows

⋈	File	Edit	Selection	View	Go	Run	Terminal	Help	
G	E	MAP	A_1.prn ●	≣ s	QLQu	iery8 鱼	≡ м/	APA.prn	•
	С	: > CA	MDT > WD 🛛	> ≣ №	IAPA_	1.prn			
0		1	@ DAT	e srai	D	T_MAX	T_MIN	I RAI	N
\sim		2	198400	1	27.5	38.	.3 23	3.7	0.0
			<mark>19</mark> 8400	2	30.1	40.	.1 24	1.9	2.9
്റ്റ			198400	3	9.8	31.	.2 22	2.9	11.0
0		5	198400	4	28.2	35.	.3 21	1.1	0.3
~		6	198400	5	28.3	36.	.0 21	l . 7	0.3
_ a ≥		7	198400	6	25.5	36.	.4 21	L . 9	0.1
			198400	7	27.6	38.	.0 23	3.0	0.0

g. Press Ctrl + Shift + Alt, then PgDn/PgUp or Down/Up Arrows to select up to 5000 lines as below, Fig. A.11. g:

Fig. A.11.1.g.1 Sample of part of process to Aligned MAPA.PRN from Excel CSV, with blocked 19 i.e. from left of DATE column for blocks of rows

Let go of the keys, move the cursor to the space below the DATE data or row 2 as below, Fig. A.11.1.g.2:

× -	File Edit	Selection	View Go	Run Te	erminal H	elp
G	≣ MAPA	_1.prn ●	≣ SQLQı	iery8 🔍	≣ мара	prn 🗕
	C: > CAN	NDT > WD >		1.prn		
\cap	1	@ DATI	SRAD	T_MAX	T_MIN	RAIN
\sim	2	1984001	27.5	38.3	23.7	0.0
		1984002	30.1	40.1	24.9	2.9
ይያ		198400	9.8	31.2	22.9	11.0
0		1984004	28.2	35.3	21.1	0.3
	6	198400	28.3	36.0	21.7	0.3

Fig. A.11.1.g.2 Sample of part of process to Aligned MAPA.PRN from Excel CSV, with cursor on date data, row 2

Press Delete until there are 2 spaces left between the DATE data and the left-most of the SRAD data as below, Fig. A.11.1.g.3:

⋈	File I	Edit	Selection	View	Go	Run	Terminal	Help
G	₽	Map	∆_1.prn ●	≣ so	QLQue	ry8 🗕	≡ ма	PA.prn 🛛
	C:	> CAI	MDT > WD	> ≡ M	APA_1	.prn		
0			@ DAT	E SRAD) 1	r_max	T_MIN	RAIN
\sim		2	198400	1 27.	5	38.3	23.7	0.0
			198400	2 30.	1	40.1	24.9	2.9
وړ			198400	3 9.	8	31.2	22.9	11.0
•			198400	4 28.	2	35.3	21.1	0.3
		6	198400	5 28.	3	36.0	21.7	0.3
			198400	6 25.	5	36.4	21.9	0.1

Fig. A.11.1.g.3 Sample of part of process to Aligned MAPA.PRN from Excel CSV, two spaces between DATE and SRAD

Push SRAD to the right by 1 space, Fig. A.11.1.g.4.

~	File	Edit	Coloction	View	60	Dun	Torminal	Uala
\sim	File	Eait	Selection	view	GO	Kun	leminal	нер
<u>C</u>	Ē	MAP	A_1.prn ●	≣ s	QLQu	ery8 鱼	≣ мар	A.prn 🛛
	C:	> CAI	MDT > WD	>≣м	IAPA_	1.prn		
		1	@ DAT	E SR/	٩D	T_MAX	T_MIN	RAIN
\sim		2	198400	1 27	.5	38.3	23.7	0.0
			198400	2 30	.1	40.1	24.9	2.9
്റ്റ			198400	9.	.8	31.2	22.9	11.0
0		5	198400	4 28	.2	35.3	21.1	0.3
		6	198400	5 28	.3	36.0	21.7	0.3
_ a >		7	198400	6 25	.5	36.4	21.9	0.1

Fig. A.11.1.g.4 Sample of part of process to Aligned MAPA.PRN from Excel CSV, SRAD moved one space to the right.

h. Repeat aligning the remaining columns using the same marking procedures (SRAD, T_MAX, T_MIN)

i. Repeat aligning the space between DATE data and SRAD data continuing from the last row that was aligned until the last row, Fig. A.11.1.i.1 :

Last aligned								
Row								
		21	1984020	27.6	36.1	20.8	0.0	
		22	1984021	25.5	37.3	21.8	0.0	
		23	1984022	24.0	34.6	21.7	0.0	
		24	1984023	29.2	35.1	20.3	0.1	
		25	1984024	25.9	35.1	20.9	0.0	
		26	1984025	26.2	35.7	19.1	0.1	
		27	1984026	16.3	34.1	20.6	1.7	
		28	1984027	27.0	33.6	21.1	1.0	
		29	1984028	17.0	34.9	23.4	5.6	
		30	1984029	16.3	35.5	23.8	4.8	
		31	1984030	25.5	34.8	25.1	4.5	
		32	1984031	25.2	34.8	25.1	13.4	
		33	1984032	21.6	32.5	22.9	5.8	
	Q	34	1984033	27.7	37.0	22.4	0.2	
		35	1984034	15.2	32.4	22.9	8.6	

Fig. A.11.1.i.1 Sample of part of process to Align MAPA.PRN from Excel CSV, aligning the columns.

j. @____DATE____SRAD___TMAX___TMIN___RAIN

_____ represent 2 spaces in between the columns

k. Remove underscores in the temperature column headers (T_MAX and T_MIN) The fully aligned WTD data should look as below, Fig. A.11.1.k. :

⋈	File Edit	Selection V	íew Go	o Run	Termi	nal Help	2 9	paces between
L)	≣ MAPA	A_1.prn ●	≣ sqlc)uery8	• =	MAPA.prn	со	lumn Headers
	C: > CAI	MDT > WD >		A_1.prn				
	1	Ø DATE	SRAD	TMAX	TMIN	RAIN		
\sim	2	1984001	27.5	38.3	23.7	0.0		
		1984002	30.1	40.1	24.9	2.9		2 spaces between
പ്പ		1984003	9.8	31.2	22.9	11.0		data columns
•		1984004	28.2	35.3	21.1	0.3		
	6	1984005	28.3	36.0	21.7	0.3		
_ ≥		1984006	25.5	36.4	21.9	0.1		
		1984007	27.6	38.0	23.0	0.0		
~	9	1984008	25.8	37.1	23.3	1.4		
Ш	10	1984009	25.0	36.8	23.5	0.1		
	11	1984010	24.1	37.5	24.0	2.2		
	12	1984011	28.3	41.4	25.5	0.1		

Fig. A.11.1.k. Sample of MS VS Code Editor aligned WTD file

I. After completing the alignment, save the file as MAPA.WTD

5. Repeat this formatting and alignment for all the Weather Centers in the Excel Workbook.

SECTION C. *.WTH YEARLY FILES

Each *.WTD file should be split into yearly *.WTH files equivalent to the number of years found in the *.WTD file, e.g. MAPA.WTD should be split into MAPA8401.WTH, MAPA8501.WTF, , , , MAPA1901.WTH.

Last Observation Year in*.WTD = 2019 First Observation Year in *.WTD = 1984

Each *.WTH File should be formatted the same way as the *.WTD file as done above but with the DATE data column shown as below as the final output, Fig. B.1.a. :

∢	File	Edit	Selectior	n View	Go	Run	Terminal	Help		MAPA840
ر ار		₹ МАР/	48401.WT	H C:\\\	ND	🗙 Re	lease No	tes: 1.55.1	≣ MA	PA8401.WTH
	_ (: > CAI	MDT > W	TH_2017	> ≡	MAPA84	01.WTH			
0		1	*WEATH	er dat <i>i</i>	A : M/	APA				
\sim		2								
			@ INSI	l	LAT	LONG	ELEV	TAV	AMP REFHT	WNDHT
୍ବର			MAPA	13.	567 :	126.250	89	27.3	1.6 -99.0	-99.0
0			@ DATE	SRAD	TMAX	TMIN	RAIN			
		6	02001	9.4	29.6	21.7	3.5			
୍କ 🔎			02002	9.2	29.4	22.9	1.9			
~			02003	11.6	30.3	23.2	7.6			
		9	02004	7.5	29.8	21.6	2.2			
Ш		10	02005	11.7	29.7	20.5	0.0			
		11	02006	14.8	29.1	19.3	0.0			
		12	02007	9.8	28.3	19.9	0.0			
		13	02008	16.1	28.9	20.7	0.0			
		14	02009	15.4	30.0	19.3	0.0			
		15	02010	17.4	30.6	18.5	0.0			
		16	02011	10.6	30.7	20.8	4.0			

Observation Year = 2002, Observation

Fig. B.12.a. Sample MAPA0201.WTH now Aligned file (Observation year = 2002)

Day = 009 = 09 Jan

** Note: Weather data in this file is only illustration data

1 Feb = 02032, 31 Dec = 02365

To create a *WTH file, start with the WTD worksheet for the desired Weather station as below, Fig. B.12.b. :

	Clipboar	d 5		Font	Fa		Alignment	E.	Number	E.	
F	15	• : :	X 🗸	<i>f_x</i> =C1	15&E15						
	А	В	С	D	E	F	G	н	I.	J	
1											
2	LAT	LON	YEAR	DOY	DOY Formatted	@ DATE	ALLSKY_SFC_SW_DWN	T2M_MAX	T2M_MIN	PRECTOT	
3	-17.833	35.33301	1981	3	003	1981003	-99	33.26	23.45	3.41	
4	-17.833	35.33301	1981	4	004	1981004	-99	32.86	22.91	0.05	
5	-17.833	35.33301	1981	5	005	1981005	-99	33.57	21.74	0.48	
6	-17.833	35.33301	1981	6	006	1981006	-99	33.34	21.93	3.23	
7	-17.833	35.33301	1981	7	007	1981007	-99	30.83	22.42	6.93	
8	-17.833	35.33301	1981	8	008	1981008	-99	33.11	22.41	1.63	
9	-17.833	35.33301	1981	9	009	1981009	-99	32.81	22.4	17.74	
10	-17.833	35.33301	1981	10	010	1981010	-99	30.47	23.19	2.21	
11	-17.833	35.33301	1981	11	011	1981011	-99	30.16	22.59	1.43	

Fig. B.12.b Sample of daily climatological data with re-formatted DOY and @ DATE, columns E and F.

- 1. Insert a Column between F and G and write Header @ DATE
- 2. Insert a formula in G3 as shown below:

	- 101	nacranice								For	matting * Ta
	Clipboar	d 5		Font	Gi .		Alignmen	t G	Number	Gi i	Styl
G	3	• : :	X V	<i>f_x</i> =R	GHT(C3,2) & E3						
	Α	В	С	D	E	F	G	н	1	J	к
1											
2	LAT	LON	YEAR	DOY	DOY Formatted	@ DATE	@ DATE	ALLSKY_SFC_SW_DWN	T2M_MAX	T2M_MIN	PRECTOT
3	-17.833	35.33301	1981	3	003	1981003	81003	-99	33.26	23.45	3.41
4	-17.833	35.33301	1981	4	004	1981004		-99	32.86	22.91	0.05
5	-17.833	35.33301	1981	5	005	1981005		-99	33.57	21.74	0.48
6	-17.833	35.33301	1981	6	006	1981006		-99	33.34	21.93	3.23
7	-17.833	35.33301	1981	7	007	1981007		-99	30.83	22.42	6.93
8	-17.833	35.33301	1981	8	008	1981008		-99	33.11	22.41	1.63

Fig. B.12.b.2 Sample of daily climatological data with new column @ DATE, column G.

										10	matung ·	ar
	Clipboar	d 13	i	Font	G.		Alignmer	nt 🕞	Number	G.	Sty	les
E	LO	• : :	× v	f _x =TE	EXT(D10,"000")							_
	А	В	С	D	E	F	G	н	I.	J	К	
1												
2	LAT	LON	YEAR	DOY	DOY Formatted	@ DATE	@ DATE	ALLSKY_SFC_SW_DWN	T2M_MAX	T2M_MIN	PRECTOT	
3	-17.833	35.33301	1981	3	003	1981003	81003	-99	33.26	23.45	3.41	
4	-17.833	35.33301	1981	4	004	1981004	81004	-99	32.86	22.91	0.05	
5	-17.833	35.33301	1981	5	005	1981005	81005	-99	33.57	21.74	0.48	
6	-17.833	35.33301	1981	6	006	1981006	81006	-99	33.34	21.93	3.23	
7	-17.833	35.33301	1981	7	007	1981007	81007	-99	30.83	22.42	6.93	
8	-17.833	35.33301	1981	8	008	1981008	81008	-99	33.11	22.41	1.63	
9	-17.833	35.33301	1981	9	009	1981009	81009	-99	32.81	22.4	17.74	
10	-17.833	35.33301	1981	10	010	1981010	81010	-99	30.47	23.19	2.21	
11	-17.833	35.33301	1981	11	011	1981011	81011	-99	30.16	22.59	1.43	

3. Drag or copy the formula in G3 all the way down to the last row as below:

Fig. B.12.b.3 Sample of daily climatological data with new column @ DATE, dragged to cover all rows, note the formula (+TEXT(D10,"000")

4. Now Copy Column G to Column K by highlighting on the Column names, copy the selected columns and paste into a new Excel Workbook as below. Rename the columns to SRAD, TMAX, TMIN and RAIN as below, Fig. B.12.b.4 :

G

Fig. B.12.b.4 Sample of daily climatological data with missing SRAD.

N.B. Missing SRAD, i.e. -99 is to be replaced with interpolated/extrapolated from neighbouring days.

5. Save the above Excel sheet and Export to formatted *.WTH file using steps starting from SECTION A.8. to 12, Repeat this for each of the years in the *.WTD file.

CONCLUDING REMARK

The steps to make daily climatological data formats compatible with CAMDT/DSSAT have been described above, with the processes pertaining to the NASA data. It is important to ensure that the missing data are to be replaced through interpolation or extrapolation as the case may be. Due to the sensitivity of CAMDT/DSSAT to formats of the data to be ingested for running the models, the reformatting process will apply to all other sources of data as necessary. This is a living i.e. iterative process, so users are free to get in touch with authors for further clarifications as the needs arise.

REFERENCES

- (IBSNAT, 1993; Tsuji, 1998; Uehara, 1998; Jones et al., 1998), International Benchmark Sites Network for Agrotechnology Transfer project
- (Jones et al., 2001)CROPGRO, using a modular structure; (Jones and Kiniry, 1986), The CERES models for Maize (Ritchie and Otter, 1985), The CERES models for Wheat

(Hoogenboom et al., 1994a; Jones et al., 1998; Hoogenboom et al., 1999), DSSAT and development of compatible models for additional crops, such as potato, rice, dry beans, sunflower, and sugarcane

(Uehara, 1989; Jones et al., 1998), DSSAT modifications to improve accuracy

(Jones et al., 2001), CROPGRO, using a modular structure, This design was motivated to a large extent by the modular features of APSIM (McCown et al., 1996), but it uses the approach developed by van Kraalingen (1990, 1991, 1995), Kraalingen et al. (2003)

(Jones et al. (2001) and Porter et al. (2000), DSSAT-CSM structure using the modular approach

Science

USER GUIDE 2

RUNNING CAMDT GUI

Authors: Bradwell J Garanganga and Trymore Nyakutambwa

- Prepared by Eunjin Han¹ at IRI, Columbia University – (August, 2016)

- Adapted by Trymore Nyakutambwa² and Brad Garanganga³ at digiSoft, Harare – (May 2021)

BN, NN, AN	Below Normal, Near Normal, Above Normal
CAMDT	Climate Agriculture Modelling and Decision Tool
DSSAT	Decision Support System for Agrotechnology Transfer
FORECAST	A method of collecting quantitative weather data about the current state of the
model	atmosphere at a given location and time and using mathematical modelling to
	project how the atmosphere will change at that location at a designated time
FResampler	The concept of 'conditional block sampling' of weather data conditioned on the
	probabilities of BN:NN:AN from the tercile forecast
GUI	Graphical User Interface
HINDCAST	A way of testing a mathematical model at a single latitude and longitude point
model	within a given timeframe, closely estimated inputs for past weather data are
	entered into the model to see how well the output matches the known results
IRI	International Research Institute for Climate and Society
NMHS	National Meteorological and Hydrological Services
PMW	Python Mega-Widgets, a python library for various graphical tools
PYTHON	A high level Software development language
SCF	Seasonal Climate Forecast
STOCHASTIC	Prediction/forecasting of Rainfall amount is characterized by rainfall intensity and
	rainfall frequency
WD	Working Directory housing CAMDT/DSSAT and Weather files

1. INTRODUCTION

Climate Information Services can also be used to assist NMHS and the Agricultural Sector to predict, plan and implement crop production using Seasonal Climate Forecasts and Hindcasts. This tool requires parameters supplied by both NMHS, for example seasonal Rainfall recordings, Maximum and Minimum Temperatures, Sun radiation, longitudes and latitudes for the homogeneous rainfall zones. Temporal Downscaling from other forecast centres is also required to validate the national forecasts. The Agricultural Sector will provide data for the homogeneous rainfall zones such as crop type and varieties, required farm inputs and their costs, farming seasons (prediction horizons), planting details, water management and fertilizer types, markets and selling prices.

³ Contact info: <u>bjgaranganga@digitron.co.zw</u>

¹ Contact info: <u>eunjin@iri.columbia.edu</u>

² Contact info: trymoren@digitron.co.zw

Two (2) temporal downscaling methods are available in CAMDT: Stochastic Disag and FResampler.

- Non-parametric performs as the parametric method in downscaling probabilistic climate forecast.
- Non-parametric method is sensitive to data volume and sampling size.
- The parametric method is sensitive to data volume and type of rainfall information.
- Downscaling median not enough; downscaling distribution sampling points is needed.

i. Stochastic Disag (Parametric)

The conditional stochastic weather generator disaggregates monthly rainfall to daily weather sequences that preserve monthly rainfall statistics. Since a typical Seasonal Climate Forecast is provided for the coming three months e.g., JFM, additional steps are required before we can downscale the SCF:

- a. Determine representative seasonal deviates (here, seasonal rainfall total) from quantiles of the given SCF probability curve, and
- b. Derive monthly rainfall amounts from the seasonal deviates. The stochastic disaggregation method based on Hansen and Ines (2005). The stochastic weather generator simulates rainfall occurrence using a two-state second-order hybrid Markov model (Hansen and Mavromatis, 2001). A first-order chain is applied if the previous day is wet (e.g., a transition probability of P11, if wet day following a wet day), and a second-order chain is applied if the previous was dry (e.g., a transition probability of P101 or P001) (Stern and Coe, 1984, Wilks, 1999). If the Markov model determines a wet day, a rainfall amount is sampled from a hyper-exponential distribution. Rainfall amount can be characterized by rainfall intensity and rainfall frequency. See More >>>

ii. FResampler (Non-Parametric)

This is used to disaggregate a SCF to daily weather realizations. The FResampler1 is based on the concept of 'conditional block sampling' of weather data conditioned on the probabilities of BN:NN:AN from the tercile forecast. This method randomly samples a block of daily time-series of weather data for a target season from historical observations conditioned on those tercile probabilities. Sampling is done with replacement. FResampler1 preserves the covariance between rainfall and other weather variables, e.g., minimum and maximum temperature and solar radiation in a particular day.

The non-parametric resampling method does not require any assumptions on the distribution of rainfall amount (e.g., gamma distribution in <u>Coe and Stern (1982</u>), exponential in <u>Todorovic and</u> <u>Woolhiser, 1975, Stern, 1982</u>, lognormal in <u>Swift and Schreuder (1981</u>) or hyper-exponential distribution in <u>Hansen and Ines (2005</u>). Thus, the parameters of a parametric model do not need to be estimated. This kind of non-parametric downscaling approach is preferred by some who are not comfortable with prior assumptions on the <u>probability density functions</u> or dependence of target variables (<u>Lall and Sharma, 1996</u>). In addition, resampling approaches do not necessarily consider precipitation as a main driving variable unlike other stochastic approaches which simulate rainfall occurrence (wet or dry day) independently and then other variables are simulated conditioned on wet/dry condition of the day (Rajagopalan and Lall, 1999). See More >>>

2. Running CAMDT in PYTHON

Climate Agriculture Modelling and Decision Tool (CAMDT) was developed at IRI in 2017 (Han and Ines: 2017). CAMDT is a computer desktop tool designed to guide decision-makers in adopting appropriate crop and water management practices that can improve crop yields given a climatic condition. It has been used with example for the Bicol region, Philippines. So the station used in the data ingestion is in the Bicol region. There will be need to make appropriate changes of the station where it be applied. The model works on Python platform. If a person is new in using Python, one will need to install Anaconda in order to avoid installing the modules separately. In consultation with the developers, some modifications to the CAMDT model were made in order to conduct the experiments with different cultivars grown if Southern Africa. The necessary steps required to install CAMDT are briefly discussed in the following section(s).

3. Steps to download and install CAMDT

There are few steps required to download and successfully run CAMDT

- i. Open working folder git clone: <u>https://github.com/Agro-Climate/CAMDT.git</u>
- ii. If one is new to working with Python 3.8.x, one of the best ways to run CAMDT is to install Anaconda which helps you avoid installing all required modules separately. This can be downloaded from the following website: <u>https://www.continuum.io/anaconda-overview</u> OR install the python using the Python 3.8 Install package.
- iii. If one is not conversant with graphs, install an older version of Anaconda, i.e. 4.4.x version.
- iv. Please note that CAMDT uses **TkInter** (Python interface for GUI) and **PMW** widget to create graphical user-interface.
- v. Use PIP (which installed together with PYTHON) to install PMW Python Mega Widgets

Please note that Weather files (*.WTD and *.WTH) as discussed further in the section are GENERATED data, based on actual climatology. The climatological data required to initiate the running of CAMDT can be obtained from NASA climatological data set on website: https://power.larc.nasa.gov/data-access-viewer/.

vi. Users must input daily 30-year climatological data: (Solar Irradiance, Temperature max, Temperature max, Precipitation) for an observation station. It is convenient to use NASA data.

Note: option 3 is your data from NASA which you have converted to .WTH and refactored the required fields

vii. Use Anaconda to install other packages if they are not already installed:

- a) Scipy
- b) numpy
- c) Matplotlib
- d) Pmw

One can now test CAMDT by inputting the requisite climatological data. CAMDT is a weather generator used to drive Decision Support System for Agrotechnology Transfer (DSSAT). DSSAT was developed by J.W. Jones, in the USA and his co-workers, (Jones et al: 2003). DSSAT helps decision-makers by reducing the time and human resources required for analyzing complex alternative decisions (Tsuji et al., 1998). The latest version of the software is 4.75 (Hoogenboom et al: 2019). In order to run CAMDT, therefore, demands that you obtain open source DSSAT. This requires that you register with DSSAT Foundation to get access to the software. Once you have successfully downloaded and installed both CAMDT and DSSAT software on your computer, you will be able to conduct crop yield prediction experiments.

4. CAMDT Limitations

The 2017 edition of CAMDT is ONLY automated for and strictly tied to the Rice crop cultivars and was originally developed to model Rice production in the Philippines, mostly the PILI weather centre in the Bicol River Basin. Various CAMDT computer codes and the executables work well for the rice cultivars as per the original specifications for the Model. There is a need to make some changes to enable the model to have flexibility in simulating yields for other crop cultivars.

The CAMDT software was developed using the **FORTRAN** programming language and the **PYTHON** development platform, by IRI based at Columbia University. The **FORTRAN** software code is not free and is an intellectual property of IRI and its partners, whereas they have made the **PYTHON** based CAMDT code an Open Source software. Open Source means it is freely available on the public domain and has no Copyright or usage protection.

The **PYTHON** software code is responsible for reading a weather station's historical weather data (for $y \ge 30$ years) and combine it using **n** realisations to generate an n^{th+1} predicted climatological data set for the predicted or targeted year(s) by using either the **Hindcast** or **Forecast model**. The more realisations ($n \ge 30$) or observed number of years(y) we have, the more accurate our prediction (forecast) will be.

The **FORTRAN** software code reads the weather data sets (*RAIN*, Solar Radiation (*SRAD*) and Minimum and Maximum (T_{MIN} , T_{MAX}) temperatures generated by **PYTHON** and passes that data as input to the CROP YIELD prediction model for DSSAT.

The **FORTRAN** software code is hidden from the users since it is not Open Source. The CAMDT output data sets are visible to the user and are independent of the crop (RICE, MAIZE, SORGHUM, etc.) whose YIELD is to be predicted by DSSAT.

The challenge, therefore, is to automatically link the CAMDT output to the DSSAT input. digiSoft Engineers did some analysis of the flow of the modelling data and introduced some key manual interventions to enable modelling of crops other than RICE.

User Guide 3 was prepared to overcome the limitations of CAMDT linking to DSSAT for other crops.

5. STEPS TO RUN CROP YIELD PREDICTION MODELS

This section of the user guide takes users through steps to model RICE; *User Guide 3* describes steps for other cereals/crops, requiring the user's manual intervention in order to achieve desired yields/outputs of the different crops.

I. CAMDT Folders Setup

The folder tree in Figure 0 shows a sample weather station called STAT whose RICE directory has 2 subdirectories/folders (20AN-45BN & 45AN-20BN) for the two weather terciles 20% Above Normal – 45% Below Normal and 45% Above Normal – 20% Below Normal. These are the thresholds set to represent respectively, Below Normal and Above Normal Rainfall conditions as per seasonal climate (rainfall) forecasts.

All Weather station names in all weather files are referenced to by their 4-character abbreviations. E.g. MAPAI – MAPA, CHANGALANE – CHAN, BEITBRIDGE – BEIT.

- a. Folder MZ in Figure 0 below represents the country with the weather stations under observation, in this case Mozambique
- b. Yield Predictions for Three Cereals (MAIZE, RICE, and SORGHUM) are going to be modelled.
- c. The next level of folders represent the Working folders (WD) where CAMDT will generate and store weather patterns for the two (2) terciles 20% and 45%. The naming convention of these two folders will follow the pattern:
 - i. STAT_20AN45BN_WD 20%AN / 45% BN and,
 - ii. STAT_45AN20BN_WD 45%AN / 20% BN where STAT is the weather station
 - iii. CAMDT running files and Weather input files for Hindcast/Forecast are also stored in these folders

II. Weather Data Preparation

- a. Before crop yield prediction modelling can be done, format data as described in User Guide 1:
 - i. Download climatological data from the NASA website,
 - ii. Use MS Excel to Extract and rearrange the data into columns required by CAMDT/DSSAT,
 - iii. Format the data as strictly required for DSSAT/CAMDT input using MS Excel,
 - iv. Split the data into annual daily weather using MS Excel and digiSoft MS VB Tools for Excel,
 - v. Export the data into TEXT format using the MS Excel,
 - vi. Refer to the *digiSoft Data Formatting User Guide* for steps (i) to (v) in this Section.

<Figure 1> CAMDT working directory structure

- b. Copying Weather data to Working Directory (WD = Tercile folder like \STAT_20AN45BN_WD):
 - i. The Working Directory and CAMDT/DSSAT system files are setup with the assistance of the *digiSoft CAMDT/DSSAT technical personnel*,
 - ii. Copy the STAT.WDT and STAT*.WTH files into the WD directory in readiness for the CAMDT/DSSAT Model Run. STAT represents the 1st four characters of the Weather station name and * represents the 2 digit year to be observed plus 01, e.g. STAT9801.WTH for year 1998.

iii. Check and ensure that the weather files follow the following formats:

<Figure 2> Global Weather Data formatted for CAMDT

<Figure 3> Yearly Weather Data formatted for CAMDT

III. Rice Automated Modelling vs Other Crops' Manual Modelling

- a) Rice yield prediction modelling will be run using the automated CAMDT GUI screen as explained in Section 5.iv below, since the original CAMDT edition is tied to Rice.
- b) The modelling procedures for other crops follow user intervention steps as described in *User Guide 3*.

IV. Running Rice Crop Yield Simulation

- a. Method 1: Locate the CAMDT Working Directory or folder (WD) using MS Windows Explorer, e.g.
 - i. The folder should be similar to C:\CAMDT\MZ\RICE\STAT_20AN45BN_WD
 - ii. Double-Click the Python file: "CAMDT_2017_0310.py".
 - iii. The Python programme will run and display the GUI screen as in Figure 4 below.

b. Method 2: Search for the MS Windows Command prompt and run as Administrator

i. Type: CD \ <Enter>

c. Simulation setup

- ii. Type: CD CAMDT\WD <Enter>
- iii. Type: py CAMDT_2017_0310.py <Enter>
- iv. The Python programme will run and display the GUI screen as in Figure 4 below. where WD = \MZ\RICE\STAT_20AN45BN_WD

Adjust the size of the pop-up CAMDT-GUI window for full view as shown in Figure 4.

nulation setup Temporal Downscaling DS	SAT setup 1 D	SAT setup 2 *	Scenarios setup *CREDI	Ð		
Temporal Downscaling Do.	DAT Setup 1 Do	JOAT Setup 2	Scenarios setup	'		_
Simulation mode						
Hindcast			C Forecast			
-Simulation horizon(crop growing sea	son)					
		Harvesting Ye	ear(4digit): 2010		-	
Planting Year(4digit): 2009		Harvesting M	onth: 7	•	1	
Planting Month: 12	T	*NOTE:Har (~3 months	vesting Month should be l later than expected harv	iong enough resting dates)		
Prediction horizon (seasonal climate	forecast)					
Forecast Start Year(4digit): 2009		Forecast Er	nd Year(4digit): 2010			
Forecast Start Month: 12	T	Forecast Er	nd Month: 2	•		
Planting date (DOY) 349 *NOTE	Planting date s: Validate inp	should be within outs ? Yes	the "Planting Month" of S	im horizon		

<Figure 4.a.> Simulation horizon setup - HINDCAST

On the first page "Simulation setup", you can set up simulation mode and crop growing period. First, there are two simulation options: Hindcast and Forecast. The Hindcast mode can be used to run the crop simulation model (DSSAT) for past events (i.e., for the period when observed weather data are available).

d. Forecast for Upcoming planting season

Seasonal Climate Forecasts are done as part of the Regional Outlook Forums (RCOFs). These are downscaled to National Climate Outlooks (NCFs). In Southern Africa RCOFs/NCOFs are done in August/September ahead of the planting season October/November to March/April. The Outlooks themselves are in rolling three-monthly blocks thus OND, NDJ, DJF and JFM. Meantime, the CAMDT will require preparation of data files from 1 January of the planting year up to the end of the month preceding the planting month (which is usually November). Whereas daily climatological data are available up to August, there will be gaps in September and October to cover the forecast horizon (NDJ). In this case, there is need to construct day climatological data for September and October. This can be done by using expected patterns under Above-Normal (AN), Near-Normal (NN) or Below-Normal (BN) for the station as corresponding to the Outlook for OND and NDJ. So providing the 'constructed' data for September and October will enable CAMDT to run successfully. The details of this process are shown in the chart line, <Figure 4.b.> below:

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	!				
Observed Data									esised Ita	∢ —For	ecast Da	ata 🔶
Planting	Planting Year start Announce Forecast								ce t	↑ Plantin Start	g	

<Figure 4.b.> Simulation horizon setup – FORECAST for Southern Africa

Next, *Simulation horizon (crop growing season)* section is to designate a crop growing period by typing/selecting a planting year/month and harvesting year/month. Note that if you type an invalid number for planting/harvesting year (i.e., not 4-digit number such as 209 instead of 2009), the Entry Field (blank box) would remain in red to indicate that there is an error in the format of your input. The user-defined planting month should include planting date. For example, in Figure 4, the planting DOY, 349(December 15 or 14 for leap year) corresponds to the planting month (December, 2009). Typical rice growing period in the Philippines is three months and thus approximate harvesting month would be March, 2010 in Figure 5. However, when we generate *N* weather realizations based on Seasonal Climate Forecast (SCF) (see Figure 5), some weather realizations representing dry weather may give water stress delaying crop growth, which results in delayed harvest time. Therefore, it is always recommended to give enough time (longer than actual growing period) for harvest month in Figure 4 so that DSSAT can finish simulations even for extremely delayed growths. For instance, you can put harvest month as July, 2010 rather than actual harvesting month (e.g., March, 2010). If you put harvest month as March, 2010, DSSAT may generate error-message for some simulations when crop maturity is delayed to April.

Prediction horizon (seasonal climate forecast) section is to specify the period for which SCF is released. Typically IRI seasonal climate forecast is provided for a trimester with different lead time. However, in CAMDT the prediction horizon can be set for 2~6 month period. It is meaningless to put the prediction horizon beyond the crop growing season (simulation horizon) designated in the previous step. As shown in Figure 5, the *prediction horizon* can be set for DJF or JFM or FMA depending on when you run the CAMDT. For instance, when you run the CAMDT on February 5th, 2010, you would set up the *prediction horizon* from February to April. In this case, observed weather data will be used to run the DSSAT until January 31, and then temporally downscaled *N* weather realizations will be used to run DSSAT for FMA season see <Figure 4.a.>. Weather conditions beyond the SCF (e.g., April in Figure 5) are generated based on climatology because no SCF information is available for this period.

<Figure 5> (WE NEED to change the Simulation horizon to conditions that obtain in Southern Africa i.e. Nov, Dec, Jan, Feb, Mar and Apr)

Lastly, planting date should be provided in DOY (Day of Year) format. Again, this planting date should match with the planting month in the previous *Simulation horizon* section. If you want to check if all your inputs are correct, click the "Yes" button next to "Validate inputs?". This button will check if there are any mismatches among the inputs. For example, if you put planting month and harvesting month as 2009/11 and 2009/7 respectively, you will get a pop-up error message in Figure 6(a). Once you fix the mistake in harvesting month 2009/7 to 2010/7, you will get a message shown in Figure 6(b).

(a)	(b)
7& Error in input	74 Validating Simulation Inputs
Sim Horizon: End-Month should be > Start-Month!	Good Job! - No issues found!
ОК	ОК

<Figure 6> Validating Simulation Horizon Input

a. Temporal Downscaling.

Most of the publically accessible seasonal climate forecasts (SCF) by Regional and National Climate Outlooks Forums (i.e. RCOFs or NCOFs) are released in the format of tercile probability: below-, near- and above-normal probability. Therefore, the tercile-based SCF should be converted to daily weather sequences to force the DSSAT simulations. This temporal downscaling process can be set up in "Temporal Downscaling" page on the CAMDT in Figure 7.

The temporal downscaling process requires a long-term weather record to be used for parameterization of the *Stochastic Disag* method and to serve as a sampling pool for the *FResampler* method. The first step is to select a weather station which has long-term daily weather data and is closest to the area/fields of interest. The weather station has an ID which consists of exactly 4 characters (e.g., PILI in Figure 7). The long-term daily weather data should be contained in a text file of which name is same as the station ID. That is, for the PILI station in Figure 7, you should have PILI.WTD file as shown in Figure 8. The *.WTD file has similar format to the DSSAT weather input file (*.WTH) shown in Figure 9.

The *.WTD file contains all historical daily weather (SRAD, TMIN, TMAX and rainfall) data in ONE file while each *.WTH file contains only one-year data (i.e., PILI**75**01.WTH has data for the year of 1975 and PILI**76**01.WTH for 1976 and so on). Note that both *.WTD and *.WTH files are format-sensitive and therefore location of each column and number of spaces should be carefully checked in advance.

CAMDI User-Interface Simulation setup Temporal Downscaling DSSAT s Station with Historical Weather Data Station Name: PILI Downscaling Method C EResampler	*Make sure ####.WTD file should exist in workding directory
Click to add mo FResampler Num. of realization: Not added *Must be multiples of 10, preferably greater than 30	e details for the selected method Stochastic Disag. Num. of realization: 40 *Rainfall Target variable for *.MTH (1 indicates "chosen") Amount: 1 Frequency: 1 Intensity: 0
Tercile-baesd Seasonal Forecast Below Normal(%): 45 Above Norma	I(%): 20 Near Normal(%): 100-BN-AN

<Figure 7>

DSSAT does not allow any missing data, fill in the missing values before running CAMDT (*.WTD should not have any missing values such as -99). The *.WTD (temporal downscaling) and *.WTH files, should be in the main working directory (to be setup in Figure 23. In this exercise, PILI.WTD should be in the folder "~\WD"

PILI.WTD ×				
0 DATE	SRAD	TMAX	TMIN	RAIN
1975244	18.6	32.9	23.5	0.0
1975245	14.4	28.0	23.2	12.4
1975246	15.5	30.7	23.1	3.3
1975247	13.9	32.5	23.4	18.0
1975248	15.6	32.5	24.5	0.2
1975249	14.4	32.0	23.0	1.3
1975250	16.0	32.5	22.8	0.8
1975251	14.8	32.8	23.4	4.6
1975252	14.7	32.8	24.6	2.0
1975253	15.5	32.8	24.1	0.0
1975254	16.3	33.0	23.8	2.8

PILI7501.WTH × *WEATHER DATA : PILI LONG ELEV TAV AMP REFHT WNDHT @ INSI LAT PILI 13.555 123.270 35 27.5 1.8 -99.0 -99.0 @DATE SRAD TMAX TMIN RAIN DEWP WIND PAR EVAP RHUM 75244 18.6 32.9 23.5 0.0 75245 14.4 28.0 23.2 12.4 75246 15.5 30.7 23.1 3.3 75247 13.9 32.5 23.4 18.0 75248 15.6 32.5 24.5 0.2 75249 14.4 32.0 23.0 1.3 75250 16.0 32.5 22.8 0.8 75251 14.8 32.8 23.4 4.6

<Figure 8>

<Figure 9>

There are two temporal downscaling methods available in CAMDT: Stochastic Disag and FResampler method. The Stochastic Disag method is a conditional weather generator designed for the stochastic disaggregation of monthly rainfall into daily realizations. Model parameters of the Stochastic Disag are estimated by running EstimatePrm.exe with arguments *.CLI and *.WTD files. Command for running EstimatePrm.exe is hidden behind the CAMDT, but you should make sure both *.CLI and *.WTD files are prepared in advance under the working directory. An example of *.CLI file is shown in Figure 10 for the PILI station. The *.CLI file provides only geo-location of the weather station to the parameter estimation program. Therefore, the information within the red box in Figure 10 is only necessary. Next step for the parameter estimation is to determine monthly target information (again, Stochastic Disag basically generates daily weather realizations from monthly rainfall). You can choose different monthly targets: one of the rainfall characteristics (rainfall amount, frequency, intensity), or combination of two characteristics (e.g., amount & frequency), but not the three at the same time. When you select the Stochastic Disag method and clicks the button "Click to add more details for the selected method" in Figure 7, a pop-up window appears so that you can select monthly targets (Figure 11 (a)). In addition, you can specify how many weather realizations would be created. The larger number of realizations is the better to fully represent uncertainties from the SCF. Typically 100 realization is reasonable while at least 30 realizations are recommended. The selected monthly target(s) and number of realizations are copied to the main CAMDT window. The selected monthly targets are indicated as "1" and non-selected one(s) are as "0" as shown in Figure 11(b).

PILI.	× II										
*(LIMAT	TE:PILI									
0	INSI PILI	L 13.5	AT 67 12	LONG	LEV 89	TAV 27.3	AMP 1.6	SRAY 16.7	TMXY 31.9	TMNY 22.7	RAIY 2302
0:	START	DURN	ANGA	ANGB	REFHT	WNDHT	SOURCE				
	1975	41	0.25	0.50	-99.0	-99.0	Calcula	ated_1	from_da	ily_da	ta
0	GSST	GSDU									
	1	365									

(a)	(b)
7% Stochastic Downscaling details	etails for the selected method
Num. of realization (> 30): 100	Stochastic Disag
*Choose target to translate SF to monthly values *NOTE: Chose only one or two	Ium. of realization: 100
combinations)	mount:
Rain frequency	requency:
🗆 Rain intensity	ntensity: 0
ок	

<Figure 11>

<Figure 10>

The second downscaling method, *FResampler* creates weather realizations by sampling historical records based on tercile-based SCF. It samples a seasonal chunk of daily weather data that includes SRAD, TMIN, TMAX and rainfall with replacement. Unlike the *Stochastic Disag*, the *FResampler* method does not require any further information except number of realizations in running it. Note that number of realization should be multiples of 10. When you select the *FResampler* method and clicks the button "Click to add more details for the selected method" in Figure 7, a simple pop-up window (Figure 14a) appears for you to determine number of realizations. Clicking "OK" copies the output to the bottom of the screen like in Figure 15 for the *Stochastic* method.

Stochastic Downscaling details	\times
Num. of realization (> 30): 40	
*Choose target to translate SF to monthly values *NOTE: Chose only one or two combinations)	
Rain amount	
Rain frequency	
🗆 Rain intensity	
ок	

<Figure 12>

Tercile-based SCF can be typed directly by a user into the bottom window to provide probabilities of Below Normal (BN) and Above Normal (AN), see Figure 13. The CAMDT extracts probabilities of BN, NN and AN from the chosen weather data in *.WTD. The chosen different monthly targets: one of the rainfall characteristics (rainfall amount, frequency, intensity), or combination of two characteristics (e.g., amount & frequency) can be selected by using the Check Boxes as shown on the bottom of the Temporal Downscaling screen as shown in Figure 12. Again, the input is copied to the main window (see Figure 11(b)).

If the *FResampler* method is selected, only the number of realisations is required when you click "Click to add details of the selected method" (Figure 14(a)). Clicking "OK" will copy the number of realisations to the main window (Figure 14(b)).

Frequency: Intensity:		1	
al(%): 20	Near Normal(%):	100-BN-AN	
			· ·
Exit			
1	Frequency: Intensity: nal(%): 20 Exit	Frequency: Intensity: nal(%): 20 Near Normal(%): Exit	Frequency: 1 Intensity: 0 nal(%): 20 Near Normal(%): 100-BN-AN Exit

<Figure 13>

(a)	
FResampler details	×
Num. of realization (> 30): 40	
ок	

(b)		
Downscaling Method		
© FResampler	C Stochastic	Disag
Click to add more	e details for the selected method	
FResampler	Stochastic Disag.	
Num. of realization: 40	Num. of realization:	Not added
*Must be multiples of 10,	*Rainfall Target variable for *.MTH	(1 indicates "chosen")
preferably greater than 30	Amount:	Not added
	Frequency:	Not added
	Intensity:	Not added

<Figure 14>

Click to add more details for the selected method Click to add met
Click to add more details for the selected method
Resampler Stochastic Disag. um. of realization: Not added
um. of realization: Not added Num. of realization: 40
Must be multiples of 10, *Rainfall Target variable for *.MTH (1 indicates "chosen"
Amount: 1
Frequency:
Intensity: 0

<Figure 15>

3) DSSAT Setup

Next step is to provide crop management inputs for DSSAT on "DSSAT setup 1" and "DSSAT setup 2" pages (Figure 17 and 19). These inputs will be used to fill out the DSSAT-experimental file (*.RIX or *.SNX) shown in Figure 16. The DSSAT-experimental file called File-X can contain much more information such as initial soil condition, tillage, management options etc. However, in CAMDT, inputs from the user were simplified as much as possible so that the user is not overwhelmed by too much options.

First, since the current version of CAMDT focus on rice, there are two planting methods available: dry seed or transplanting (Figure 17). Planting details can be typed in the next section where some default values are already given for guidance.

Soil physical or chemical characteristics are critical factors for crop growth. Due the unavailability of soil database from the Bicol region in the Philippines, a few soil profiles extracted from WISE (World Inventory of Soil Emission Potentials) soil database (WI.SOL) were added on CAMDT. More soil profiles from WI.SOL can be added to the CAMDT by simply modifying Python script (see *CAMDT_Python_user_guide.docx* for details). For each available soil profile, you can set up different rooting depths (shallow, medium or deep).

PILI0001.SNX × *PLANTING DETAILS @P PDATE EDATE PPOP PPOE PLME PLDS PLRS PLRD PLDP PLWT PAGE PENV PLPH SPRL 1 09349 75 20 2. 25 -99 25 Т R 0 0 23 3 0 *IRRIGATION AND WATER MANAGEMENT @I EFIR IDEP ITHR IEPT IOFF IAME IAMT IRNAME -99 -99 -99 -99 -99 -99 1 UNKNOWN 1 GI IDATE IROP IRVAL 2.0 1 09344 IR008 1 09344 IR010 0.0 1 09349 IR011 0.0 1 09349 IR009 50.0 *FERTILIZERS (INORGANIC) OF FDATE FMCD FACD FDEP FAMN FAMP FAMK FAMC FAMO FOCD FERNAME 1 35.0 -99 -99 -99 -99 -99 UNKNOWN 1 35.0 -99 -99 -99 -99 -99 UNKNOWN 1 17 FE005 AP012 -99 -99 -99 UNKNOWN 32 FE005 AP012 1 *SIMULATION CONTROLS ON GENERAL NYERS NREPS START SDATE RSEED SNAME...... SMODEL 1 GE S 09319 2150 IRRI, PILA JAN 85 UREASE 1 1 ON OPTIONS WATER NITRO SYMBI PHOSP POTAS DISES CHEM TILL CO2 Y N N N 1 OP Y N N N M WTHER INCON LIGHT EVAPO INFIL PHOTO HYDRO NSWIT MESOM MESEV MESOL ON METHODS 1 ME M M E R S C R 1 G S 2 @N MANAGEMENT PLANT IRRIG FERTI RESID HARVS R R D 1 MA R Μ

<Figure 16>

CAMDT User-Interface				-		×
Simulation setupTemporal DownscalingDSS	AT setup 1DS	SAT setup 2	*Scer	narios set	up *CR	EDIT
Planting method						1
O Dry seed		 Transp 	lantin	g		
Planting details						
Planting distribution:	Rows				▼	
Plt population at seedling(plt/m2):	75					
Plt population at emergence(plt/m2):	25					
Planting row spacing(cm):	20					
Row direction(deg from North):	0					
Planting depth(cm):	2				_	
Soil—						
Soil type: SCL(WI_ANPH007)	Rooting de	epth: medium	n		▼	
Cultivar selection						
Calibrated		O User-s	pecifie	ed		
Click to add mor	e details for c	ultivar type				
Calibrated	User-specifie	ed cultivar —				
Cultivar ID: Not added C	ultivar ID:	Not added				
Cultivar name: Not added	ultivar name:	Not added	P20:	Not add	ed	
	cotype code:	Not added	G1:	Not add	ed	
	1: 2R·	Not added	G2:	Not add	ed od	
P	5:	Not added	G4:	Not add	ed	
		,		,		
1						
	Exit					

<Figure 17>

Copyright © 2021 Digitron Business Systems

In DSSAT-CERES-Rice, crop growths are simulated using genetic coefficients defined in Table 1. These coefficients have different values for each rice variety and should be carefully calibrated before model simulation using field experiment data. The DSSAT 4.6 version has genetic coefficients calibrated for a number of rice varieties. In CAMDT, three calibrated rice cultivars (IR54, 58, 64) from *RICER45.CUL* file were added. In addition, we calibrated two new varieties using field experiment data at PhilRice Central Experiment Station, Muñoz, Nueva Ecija in the Philippines: inbred PSB Rc82 (110 days to maturity) and hybrid Mestiso 20 (111 days to maturity). In total, those five cultivars are available for DSSAT simulation in the current version of CAMTD (Figure 18(a)), but again additional cultivars from *RICER46.CUL* file can be easily added by modifying Python script of the CAMDT. If you want to simulate using the given cultivars, "Calibrated" option should be chosen under the "Cultivar selection" group (Figure 17). Once you click "Click to add more details for cultivar type" button, a new pop-up window appears for you to select a cultivar type as shown in Figure 16(a). In case you are an expert of DSSAT and has your own calibrated parameters for a certain cultivar, you can add newly calibrated parameters by selecting "User-specified" option under "Cultivar selection" group and clicking "Click to add more details for cultivar selection" group

can be directly typed on the new window (Figure 18(b)) and these coefficients will be written into *RICER46.CUL* file under the working directory.

Coefficients	Definition
P1	Time period (expressed as growing degree days [GDD] in °C above a base
	temperature of 9 °C) from seedling emergence during which the rice plant is not
	responsive to changes in photoperiod. This period is also referred to as the basic
	vegetative phase of the plant.
P20	Critical photoperiod or the longest day length (in hours) at which the development
	occurs at a maximum rate. At values higher than P20 developmental rate is slowed,
	hence there is delay due to longer day lengths.
P2R	Extent to which phasic development leading to panicle initiation is delayed
	(expressed as GDD in °C) for each hour increase in photoperiod above P20.
P5	Time period in GDD °C from beginning of grain filling (3 to 4 days after flowering) to
	physiological maturity with a base temperature of 9°C.
G1	Potential spikelet number coefficient as estimated from the number of spikelets per
	g of main culm dry weight (less lead blades and sheaths plus spikes) at anthesis. A
	typical value is 55.
G2	Single grain weight (g) under ideal growing conditions, i.e. nonlimiting light, water,
	nutrients, and absence of pests and diseases.
G3	Tillering coefficient (scaler value) relative to IR64 cultivar under ideal conditions. A
	higher tillering cultivar would have coefficient greater than 1.0.
G4	Temperature tolerance coefficient. Usually 1.0 for varieties grown in normal
	environments. G4 for japonica type rice growing in a warmer environment would
	be 1.0 or greater. Likewise, theG4 value for indica type rice in very cool
	environments or season would be less than 1.0.

<Table 1. The Genetic Coefficient for DSSAT Rice Model>

<Figure 18> Cultivar Selection ((a)) and Inputting calibrated Cultivar ((b))

The "DSSAT setup 2" page in Figure 17 is to get user's inputs for fertilizer and irrigation applications. First, you should select if fertilizer would be applied (by selecting "Fertilization" button) or not (by selecting "No Fertilization" button). If "Fertilization" was selected, you can give more detailed inputs (fertilizer material, amount and application methods) by clicking the button "Click to add more details for fertilizer". Again, for simplicity, the CAMDT allows fertilizer application up to maximum three times. Figure 19 shows an example of how to fill out the Fertilizer Application section. Once you fill out the pop-up window, the inputs will be copied to the main window. Note that you also should type "number of fertilizer applications" on the blank box in the "Fertilizer application" group.

Next, an irrigation option need to be chosen. There are three options available: 1) Automatic when required, 2) On Reported dates, 3) No Irrigation. The first option, "Automatic when required" can be used to simulate crop growth with no water stress by triggering irrigation whenever soil water content drops down below a certain threshold (% of maximum available water in soil). Three inputs shown in Figure 21 are required when "Automatic when required" is selected on the main window in Figure 19.

More realistic irrigation applications can be possible with the option "On Reported dates". Since we assume "lowland" rice, initial puddling is assumed and related information (puddling date, and percolation rate) is required (Figure 19). For the rest of irrigation, you need to provide irrigation date, bund height, flood depth and if the flood depth would be constant or not. If you check "yes" to the question, "Constant flood depth?" (as shown in Figure 19, the DSSAT assumes the flood depth maintains constant flood depth until next irrigation record. Otherwise (when "No" is chosen), regular irrigation concept is applied. Once you click "ok" button of the pop-up window, all the inputs you provided will be copied to the main window. Do not forget to type "Number of Irrigations" on the main window in Figure 19.

Simulation setup Tempora	al Downscaling DSSAT on ertilization	setup 1	AT setup 2 8ce	narios setup *CREDIT
Fertilization applicati Fertilizer application – Number of fertilizer appl No. application Days a 1st: 2nd: 3rd: Irrigation C Automatic wh	on ertilization	setup 1 0555		
Fertilization applicati Fertilizer application – Number of fertilizer appl No. application Days a 1st: 2nd: 3rd: Irrigation C Automatic wh	0N ertilization			4
Fertilizer application – Number of fertilizer appl No. application Days a 1st: 2nd: 3rd: Irrigation C Automatic wh	ertilization			
Fertilizer application – Number of fertilizer appl No. application Days a 1st:			O No Fe	ertilization
Fertilizer application – Number of fertilizer appl No. application Days a 1st:	Click to add	l more details f	or fertilizer	
Number of fertilizer appl No. application Days a 1st:				
No. application Days a 1st:	lications? 3			
Ist: 2nd: 3rd: Irrigation Irrigation (Automatic)	fter election Amount		utilizza zastanial	Analization mathead
1st: 2nd: 3rd: Irrigation C Automatic wh		(N, Kg/na) Fe		Application method
2nd: 3rd: Irrigation Automatic wh	17	35	FE005(Urea)	ast on flooded/saturated s
3rd: Irrigation C Automatic wh Irrigation (Automatic)	32	35 1	FE005(Urea) c	ast on flooded/saturated s
Irrigation Automatic wh Irrigation (Automatic)	52 .	35	FE005(Urea)	ast on flooded/saturated s
Management depth(cm Efficiency fraction:	en required Click to add): Not added Not added	 On Report more details for shold(% of max 	ted dates or irrigation (available): No	C No Irrigation
- Irrigation (Reported)-				
Number of irrigations?	2	_		
Puddling date(YYDOY): Percolation rate(mm/da	09346 y): 2			
No. irrigation Date(YY	DOY) Bund height	t Flo	od depth	Constant depth?
1st: 0935	2 100		30	Yes
2nd: 0935	6 150		50	No
3rd: Not ad	ded Not added	No	ot added	Not added
•				
		Evit		

<Figure 19> Fertiliser application and Water irrigation management for DSSAT ingestion

1st application	
Days after planting:	17
Amount (N, kg/ha):	35
fertilizer material:	FE005(Urea)
application method:	AP012(Broadcast on flooded/saturated soil, 15% in soil)
2nd application	
Days after planting:	32
Amount(N, kg/ha):	35
fertilizer material:	FE005(Urea)
application method:	AP012(Broadcast on flooded/saturated soil, 15% in soil)
3rd application	
Days after planting:	52
Amount(N, kg/ha):	35
fertilizer material:	FE005(Urea)
application method:	AP012(Broadcast on flooded/saturated soil, 15% in soil)

Management depth(cm):	30
Threshold(% of maximum available water tri	ggering irrigation): 50
Efficiency fraction:	1

<Figure 21>

76 Irrigation on Report Dates	<u>s</u>
Puddling	
Puddling date(YYDOY):	09346
Percolation rate(mm/day	(): 2
1st irrigation	
Irrigation date(YYDOY):	09352
Bund height(mm):	100
Flood depth (mm):	30
Constant flood depth?	
-Yes: Maintain constan	nt specified flood depth until next irrigation record.
-No: Regular irrigation	(bunded or upland)
Yes	O No
- 2nd irrigation	
Irrigation date(YYDOY):	09356
Bund height(mm):	150
Flood depth (mm):	50
Constant flood depth?	
C Yes	• No
- 3rd irrigation	
Irrigation date(YYDOY):	None
Bund height(mm):	
Flood depth (mm):	
Constant flood depth?	
Yes	C No
	ок

<Figure 22>

4) Scenario Setup

Now we are ready to set up "what-if" scenario(s) and run DSSAT for the scenarios. On "Scenarios setup" page in Figure 23, first, you need to designate a working directory where all required input files are located. The list of necessary input files is shown in Table 2. Please make sure all those input files are saved in the working directory. Once you click "Click to select a working directory" button, a new pop-up window will appear so that you can select a folder. New folders which contain simulation result for each scenario will be created under the working directory you designated.

Note: the working directory SHOULD NOT have any spaces.

lation setup	Temporal Downscaling DSSA	T setu	p 1 DSSAT se	etup 2 *Scenari	os setup 🛛 *CRI	EDIT	
Working dire	ctory						
	Workin	ig direc	tory: C:/	IRI/PH/CAMDT_20	016/GUI_test_2	2016	
			Click to selec	ct a working direc	ctory		
	*NOTE: Make sure	all inpu	it files are in t	he chosen direct	:ory		
	Output files	will be	created unde	er the chosen dire	actory with new	w scenario name	25
Threshold for	r water stress index				1		
	Threshold water str	ess (0~	~1)to compute	e prob. of exceed	ding it? 0.5		
What-If scer	narios						
3cenario Nam (4char)	e	Crop	Crop price (US\$/ton)	Cost of N fert. (US\$/kg N)	Cost of irrig. (US\$/mm)	General Cost (US\$/ha)	comments
L: TEST	Click to write param1.txt	RI	425	1	0.3	300	2 fert & 3 irrig
2:	Click to write param2.txt	N/A					
3:	Click to write param3.txt	N/A					
4:	Click to write param4.txt	N/A		i 🗖	[
5:	Click to write param5.txt	N/A					
Run DSSAT 8	& Display Outputs						
			un DSSAT for	N weather realized	ations		
			1				
6	I. Display Yield Estimation (Box	(plot)			Display Yield Es	timation (Excee	dance Curve)
I	II. Display Water Stress Index	(WSI)			IV. Display Ris	sk of Exceeding	X% W5I
			1		0.12 W 0.247		

<Figure 23>

<Table 2. Required input files for CAMDT>

Category	File name/type	
	CAMDT_PH_exe.exe	to get user's input from the CAMDT and to run temporal downscaling and DSSAT
	FResampler_Colombia.exe	to run a temporal downscaling method - FResampler
	predictWTD_Colombia.exe	to link a temporal downscaling method (<i>DisAg</i>) with seasonal climate forecast
Executables	Disag.exe	to run a temporal downscaling method - DisAg
Executables	EstimatePrm.exe	to estimate parameters for DisAg
	exportPHNT.exe	to convert outputs from <i>DisAg</i> to weather input files for DSSAT
	dscsm046.exe	DSSAT 4.6 executable
	minpt040.exe	auxiliary file to run DSSAT
	DSSAT_AnalysisTool.exe	to post-process DSSAT output to extract yield and water stress index
input related to	*.CLI (e.g., PILI.CLI)	need to run <i>DisAg</i>
weather station	*.WTD (e.g., PILI.WTD)	long-term daily weather data
	RICER046.CUL	contains genetic coefficients for rice growth simulation
DSSAT input	RICER046.SPE	Contains species coefficients for rice growth simulation
files	WI.SOL	DSSAT soil input file
	*.WTH(e.g., PILI0101.WTH)	yearly weather input files for DSSAT (need to run DSSAT with observed weather)

Next, you need to define threshold to compute water stress. Water stress (WS) is defined as $(1 - ET_{act}/ET_{crop})$, where ET_{crop} is potential daily root water uptake (demand of the atmosphere) and ET_{act} is actual transpiration due to soil moisture constraint. Therefore, WS=1 means the highest stress while WS=0 means no stress. Since we run *N* numbers of simulations with different *N* weather realizations downscaled from a SCF, we will get *N* different WS values after all simulations. Using the WS results, we can calculate probability of exceeding a certain WS value. For instance, when you set the threshold as 0.5, the CAMDT will count how many WSIs are greater than 0.5 out of total simulation results. If there are 30 WSs greater than 0.5 on a certain DAP (Days after planting) out of 100 realizations, the probability of exceeding 50% level water stress on that day is 30% given a SCF. The result, 30% can be interpreted as "risk index". This approach shows the "risk" of having passing the threshold at that day of year. High WS at critical growth stages is potentially lethal for crops.

Now, let's move to the next box, "What-If scenarios" in Figure 23 to make a name of the scenario. **The scenario name should be exactly 4 characters** (any combination of letters and numbers are fine). Once you click the button "Click to write param1.txt" next to the scenario name box, "Crop" box will turn to green with "RI" (rice). Once you click the button "Click to write param1.txt", the CAMDT will create a text file, "param_####.txt" where #### is the scenario name you typed. This text file contains all information which you provided on the pages of CAMDT user-interface (from "Simulation setup" to "Scenario setup" pages). This "param_####.txt" is the main input file to the *CAMDT_PH_exe.exe* which is the actual core program to run the temporal downscaling and the DSSAT. You can run *CAMDT_PH_exe.exe* by typing a command line on your MS-Dos window as shown in Figure 24. Instead of doing this, however, you can click the green button, "Run DSSAT for N weather realizations" within "Run DSSAT & Display Outputs" box of the CAMDT. Then MS-Dos window will show progress of the temporal downscaling and the DSSAT simulation (Figure 25).

Figure 24>		
C:\IRI\PH\CAMDT_2016\GUI_test_2016>CAMDT_PH_exe.exe param_TEST.txt		
C:\Windows\system32>cd C:\IRI\PH\CAMDT_2016\GUI_test_2016		-
Command Prompt		23

	:\IRI	\PH\C	AMDT	_2016	\GUI_test	_2016\CA	MDT_PH	exe.exe							
RUN		TRT	FLO	MAT	торит	HARWT	RAIN	TIRR	CET	PESW	TNUP	TNLF	TSON	TSOC	
Ĩ	RI	Ť	dap 67	dap 98	kg/ha 11271	kg/ha 5622	204	 216	503	mm 33	kg/ha 108	kg/ha 32	kg/ha 12978	t/ha 198	
2	RÎ	$\hat{2}$	64	98	12158	5975	335	180	499	128	140	19	12980	198	
3	RI	3	63	96	11700	5483	257	209	506	59	122	26	12980	198	
4	RI	4	67	106	13112	6643	263	249	533	97	145	17	12964	198	
5	RI	5	66	101	13158	6402	152	258	498	33	128	20	12978	198	
6	RI	6	64	99	12564	6213	170	256	519	27	123	21	12975	198	
7	RI	- 7	63	97	12523	6005	312	213	537	74	133	22	12976	198	
8	RI	8	63	96	11700	5483	257	209	506	59	122	26	12980	198	=
9	RI	9	66	101	13158	6402	152	258	498	33	128	20	12978	198	1.110
10	RI	10	63	- 97	12523	6005	312	213	537	74	133	22	12976	198	
11	RI	11	67	98	11271	5622	204	216	503	33	108	32	12978	198	
12	RI	12	63	96	11700	5483	257	209	506	59	122	26	12980	198	

<Figure 25>

Once all simulations ran successfully, you should be able to find a new folder "####_output" (in this exercise "TEST_output") under your working directory as shown in Figure 26. The folder contains all the DSSTA output files (*.OUT) as well as some additional post-processed files (AveStress.txt, YIELD.txt and PgtTHRESHPct.txt). For more information about DSSAT output, please refer to DSSAT documentation.

Compute	er + BOUTCAMP (C:) + IRI + PP			-
Organize 🔻 🛛 Include in	a library 🔻 New folder	New folder		
A	Name	Name	Date modified	Туре
💢 Favorites		AveStress.txt	08/05/2016 12:22	TXT
Desktop	JEST_output	ET.OUT	08/05/2016 12:22	OUT
😌 Dropbox	AveStress.txt	Evaluate.OUT	08/05/2016 12:22	OUT
〕 Downloads	BASE0000.WTD	INFO.OUT	08/05/2016 12:22	OUT
		Mulch.OUT	08/05/2016 12:22	OUT
	1	CVERVIEW.OUT	08/05/2016 12:22	OUT
		PatTHRESHPct.bt	08/05/2016 12:22	TXT
	1	PlantGro.OUT	08/05/2016 12:22	OUT
	1	E PlantN.OUT	08/05/2016 12:22	OUT
		RunList.OUT	08/05/2016 12:22	OUT
		SoilNi.OUT	08/05/2016 12:22	OUT
		SoilNiBal.OUT	08/05/2016 12:22	OUT
	1	SoilNoBal.OUT	08/05/2016 12:22	OUT
		SoilTemp.OUT	08/05/2016 12:22	OUT
	6.4	SoilWat.OUT	08/05/2016 12:22	
		SoilWatBal.OUT	08/05/2016 12:22	OUT
		SolNBalSum.OUT	08/05/2016 12:22	OUT
		Summary.OUT	08/05/2016 12:22	OUT
		SumStress.txt	08/05/2016 12:22	TXT
		Weather.OUT	08/05/2016 12:22	OUT
		YIELD.txt	08/05/2016 12:22	TXT

<Figure 26>

The CAMDT helps the user to display some of interesting outputs (predicted yields, water stress and gross margin) easily. To display output variables, you can click the buttons in orange (from "I. Display Yield Estimation (Boxplot)" to "VI. Display Gross Margin (Exceedance Curve)") in Figure 23. The first two buttons, "I. Display Yield Estimation (Boxplot)" and "II. Display Yield Estimation (Exceedance Curve)" are to display predicted yields in two different ways (using boxplot and exceedance curve). A box plot is used to display the distribution of quantitative data. The box shows the quartiles of the dataset while the whiskers extend to show the rest of the distribution, except for points that are determined to be "outliers". From the boxplot, you can have an idea of median (indicated by the red line in the middle of the notch) and mean (indicated by the extended red line in Figure 27(a)). The notch in Figure 27(a) displays a confidence interval around the median (typically 95% confidence interval) and the blue box shows an interquartile (i.e., 50% of data) between the 1st (i.e., 25th percentile) and 3rd (i.e., 75th percentile) quartiles. The two black bars indicates low/upper whiskers. The green dot is the simulated yield using observed weather. This green dot can be used as a reference to check how the SCF we used was accurate compared to actual weather condition during the target season. In 2010, El Niño resulted in a drier weather in JFM and a drier SCF 39.73%BN, 39.2%NN, 20.45%AN was forecasted. Therefore the green dot show very low yield compared to the forecasted yields from climatology (20%AN, 35%NN, 45%BN we set in Figure 13).

The yield exceedance curve in Figure 27(b) shows the full distribution of the predicted yields using the weather realizations downscaled from the given SCF. Exceedance probability (P) is computed as $P = m \times (n + 1)^{-1}$, where m is the rank of a forecasted yield (m=1 is the largest value) and n is the total number of simulated years (yields). Uncertainties in forecasted yields are reflected in the spread of the exceedance curve or size of the interquartile of the boxplot. Again the green dotted line in Figure 27(b) is from the observed weather.

<Figure 27>

Next two buttons, "III. Display Average Water Stress (WS)" and "IV. Display Risk of Exceeding X% WS" were to display average water stress and risk of water stress during the crop growth. In this exercise, since we set up regular flooding depth (not constant flooding depth) for the second irrigation (by selecting "No" in Figure 19), water stress happened around the DAT=100 (Figure 28(a)). However, because the water stress was minimal (less than 0.06) and it happened during the maturity stage, there was no serious yield loss due to water stress. There are also risks of exceeding 50% of water stress around DAP=100 (Figure 28(b)).

<Figure 28>

Expected gross margins can be also calculated once a user provides an expected crop price [\$ ton⁻¹], cost for fertilizer [\$ kg⁻¹N], cost for irrigation [\$ mm⁻¹], the general cost [\$ ha⁻¹]. The general cost

includes the cost of buying seeds, labor and/or maintaining/renting tools or machines. If we assume expected rice price = 425 [\$ ton⁻¹], cost for fertilizer =1[\$ kg⁻¹N], cost for irrigation =0.3 [\$ mm⁻¹] and general cost=300 [\$ ha⁻¹], the expected gross margins are calculated for all predicted yields and distribution of them are displayed in Figure 29(a) and (b) using a boxplot and exceedance curve same as yield distribution.

In this excise, we tried only one scenario. However, If you want to make another scenario (say by changing the planting date), you can simply go back to the page you want to make a change, make changes whatever you want and then type a new scenario name on the second line in Figure 23.

<Figure 29>

If you click "Click to write param2.txt" button, the newly updated information will be saved into another "param_####.txt" file. You can create up to 5 different scenarios for comparison. Example parameters file is: ...WD\TEST_output\param_TEST.txt, where TEST is the scenario name entered by the user.

For example, by running CAMDT with three different planting dates, you can find an optimal planting date as shown in Figure 30.

References:

Han, E- J. and A. V. M. Ines (2017), Downscaling probabilistic seasonal climate forecasts for decision support in agriculture: A comparison of parametric and non-parametric approach. Climate Risk Management 18, 2017, Pages 51-65.

https://doi.org/10.1016/j.crm.2017.09.003 FEWSNET.

Hoogenboom, G., C. H. Porter, V. Shelia, K. J. Boote, U. Singh, J.W., White, L.A. Hunt, R. Ogoshi, J. I. Lizaso, J. Koo, S. Asseng, A. Singels, L. P. Moreno and J. W. Jones (2019), Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7 (www.DSSAT.net). DSSAT Foundation, Gainesville, Florida, USA.

(https://www.ipcc-data.org/guidelines/pages/weather_generators.html)

Jones, J.W., G. Hoogenboom, C.H. Porter, K. J. Boote, W.D. Batchelor, L. A. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie (2003), DSSAT Cropping System Model. European Journal of Agronomy 18:235-265.

Tsuji, G.Y., 1998. Network management and information dissemination for agrotechnology transfer. In: Tsuji, G.Y., Hoogenboom, G., Thornton, P.K. (Eds.), Understanding Options for Agricultural Production. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 367_/381

END OF USER GUIDE 2

USER GUIDE 3

RUNNING CAMDT/DSSAT CROP MODELLING FOR NON-RICE CEREALS

Authors: Bradwell J Garanganga, Trymore Nyakutambwa

Acronyms

CAMDT	Climate Agriculture Modelling and Decision Tool
DSSAT	Decision Support System for Agrotechnology Transfer
GUI	Graphical User Interface
IRI	International Research Institute for Climate and Society
MZCER046	DSSAT Maize Cultivar Code
NDJ	November, December, January season
<mark>RI</mark> CER046	DSSAT Rice Cultivar Code
<mark>SG</mark> CER046	DSSAT Sorghum Cultivar Code
WD	Working Directory housing CAMDT/DSSAT and Weather files
WTD	File with daily Weather data aggregated over many years
WTH	File with one Year's daily Weather data

1. INTRODUCTION

The 2017 edition of CAMDT is ONLY automated for and tied to the Rice crop and was originally developed to model Rice production in the Philippines, mostly the PILI weather centre in the Bicol river basin.

The CAMDT software was developed using the **FORTRAN** programming language and the **PYTHON** development platform, by IRI based at Columbia University. The **FORTRAN** software code is not free and is an intellectual property of IRI and its partners, whereas they have made the **PYTHON** based CAMDT code an Open Source software. Open Source means it is freely available on the public domain and has no Copyright or usage protection.

2. Rice Automated Modelling vs Other Crops' Manual Modelling

- a. Rice modelling is run using the automated CAMDT GUI screen as explained in Section 4 of User Guide 2, since the original CAMDT edition is strictly hard-coded for Rice.
- b. Modelling procedures for other crops follow user intervention steps as described from Section 2 below.

Note: Assume the initial RICE working directory is for the 20AN-45BN Tercile which is: (...\RICE\MAPA_20AN45BN_WD

3. Running RICE Automated Dummy Model at CMD SHELL

- a) To start MAIZE crop simulation, Copy entire (...\RICE\MAPA_20AN45BN_WD) folder to new Working Dir (...\MAIZE\) folder usinf Windows Explorer
- b) Open the file (...\MAIZE\MAPA_20AN45BN_WD\TEST_output\param_TEST.txt) using Notepad, where _WD designates your path to your new MAIZE working directory or folder. Parts of the parameters file that will be changed are enclosed in the green boxes as in <Figure 1> below:

<Figure 3> Sample CAMDT Parameters file

```
!Working directory where DSSAT4.5 is installed and weather or
soil files can be found
                                                 1
Directory: C:\CAMDT\MZ\RICE\MAPA_20AN45BN_WD
1
!==(I) Simulation set up
!(1)Simulation mode (hindcast(0) or forecast(1)?)
sim_mode: 0
!
!(2)Simulation horizon
StartYear: 2009
                   2
StartMonth: 12
EndYear: 2010
EndMonth: 7
!(3)Prediction horizon
StartYear: 2009
                    2
StartMonth: 12
EndYear: 2010
EndMonth: 2
L
!(3)Planting date
                    2
Planting_date: 349
!------
!==(II) Seasonal Forecast
!(1)Downscaling method: FResampler(0), PredWTD(1)
Temp_Downscaling: 1
!(1-1)if from FResampler(0)
Factor(0-1_or>): 1
!(1-2)if from PredWTD(1) - Number of Realizations - Weather
genertions
             3
nRealz: 40
!Flag for target forecast (Rainfall amount, frequency,
intensity)
!e.g. combination of frequency and intensity(1/0=select/no-
select)=>011
Flag: 110
1
!(2)How to get seasonal forecast: from CPT(0), user-specified(1)
Seasonal_forecast: 1
!(2-1)if from CPT(0)
CPT_file: C:\IRI\PH\Philippines
```



```
Forecasts\OND_2009_Fcst_Probs.txt
Latitude:
            -17.62
                      4
          27.341
Longitude:
!(2-2)if user-defined(1)
Below_Normal: 45
                      5
Near Normal: 35.0
Above_Normal: 20
!-----
!==(III) DSSAT set up
                      6
Crop_type: Rice
!Planting method: dry seed (0) or transplanting (1)
Plt method: 1
!Planting detail
!Planting distribution: Hills (H), Rows (R), Brocast(B)
PLDS: R
!Planting population at seedling, plant/m2
PPOP: 75
!Planting population at emergence, plant/m2
PPOE: 25
                                                  6
!Planting Row spacing, cm
PLRS: 20
!Row Direction , degrees from North
PLRD: 0
!Planting depth , cm
PLDP: 2
!
!Choose weather station
                               7
Station_name(4char): MAPA
T
!(2) soil
!Major soil types: SCL1(WI_ANPH007), LoamySand(WI_ANPH008),
Clay(WI_VRPH021),Clay2(WI_VRPH043), SCL2(WI_CMPH009)
Soil_type: WI_ANPH007
!Rooting depth: shallow(2), medium(1) and deep (0)
Rooting_depth: 1
1
!(3)Cultivar: Calibrated (0) ((short duration, medium, long,
drought-tolerant)or user-defined(1)
Cultivar_type: 0
VAR_num: IF0022
                      6
VAR_name: IKENNE
!(3-1) if user-defined(4), specify cultivar parameters
VAR_num:
VAR_name:
ECO num:
P1:
P2R:
P5:
P20:
G1:
G2:
G3:
G4:
!
```



```
!(4)Fertilizer: Yes(0), or No(1) -No automatic option
Fertilization: 1
!(4-1) if Yes, 'days after sawing',
'amount', 'material', 'applications'
Number_applications:
Fertilizer 1(days):
Fertilizer_1(amount):
Fertilizer_1(material):
Fertilizer_1(application):
Fertilizer_2(days):
Fertilizer 2(amount):
Fertilizer_2(material):
Fertilizer_2(application):
Fertilizer_3(days):
Fertilizer 3(amount):
Fertilizer_3(material):
Fertilizer_3(application):
1
!(5) Irrigation: Automatic when required(0), on reported dates
(2), no irrigation(3)
Irrigation_method: 3
!(5-1)if Automatic(0)
Management_depth(cm):
Threshold:
EndPoint:
Efficiency Fraction:
End_of_Application:
Method:
Amount:
!(5-2)if Manual
Number_irrigation:
!(5-2-1) if transplanted
Puddling_date:
Puddling:
!whether transplanted or dry seeds
I _____
!==(IV) Output analysis
WSI_threshold: 0.5
```

<Figure 3> Sample CAMDT Parameters file

- c) Change TEST_output\param_TEST.txt file to reflect PATH of current desired Crop (MAIZE)
- d) Leave params_TEST.txt file with all other RICE parameters and Save the file,
- e) Switch to Command Prompt (type CMD <Enter>) at the windows Search box. Change into current crop ...WD (e.g. MAIZE\MAPA_20AN45BN_WD) by typing: CD C:\CAMDT\MZ\MAIZE\MAPA_20AN45BN_WD <Enter>
- f) Run: CAMDT_PH.exe TEST_output\param_TEST.txt <Enter>
- g) Allow shell command to run to the end and note (Successful termination, which ends by 'Cleaning current Working Directory'):

1

Cleaning current working directory...

Processing completed...

ſ

** Note: A set of tables with decimal numbers (NOT columns of -99) is displayed as the output scrolls on the screen

<Figure 4> CAMDT Command Line successful termination message

]

h) Change ...WD\TEST_output\param_TEST.txt to desired current crop, e.g. MAIZE using Notepad and save the changes:

Crop_type:	RICE> MAIZE	
VAR_num:	PHPS01> IF0022	6
VAR_name:	PSB Rc82> IKENNE	

 Run: CAMDT_PH.exe TEST_output\param_TEST.txt <Enter> with parameters set to current crop, e.g. MAIZE Shell command should report an error at the end:

[Creating experiment file	
Creating base weather file: DSSBatch.V45	
Error in Cultivar entry. Fix cultivar input file.	
File: RICER046.CUL Line: 128 Error key: IPVAR	
Additional information may be available in WARNING	6.OUT file.
Please press < ENTER > key to continue 99	
End of file reached, the word not matched, no meani	ng.
ERROR, cannot open the file, SUMMARY.OUT	
forrtl: severe (606): unknown unit number	
Image PC Routine Line Source	
CAMDT_PH.exe 0042D719 Unknown Unk	nown Unknown]

<Figure 5> CAMDT Command Line Maize Cultivar Termination Message

j) Change MAIZE\MAPA_20AN45BN_WD\MAPA0001.SNX (all occurrences of RI --> MZ; that is RICE to MAIZE cultivar file selection), for SORGHUM change RI --> SG), see Figure 4 >>> below.

k)	Run from current Working Directory at CMD SHELL:	
----	--	--

DSCSM046.EXE <mark>MZ</mark> CER046 B DSSBatch.V46 <enter></enter>	(to model MAIZE)
OR	
DSCSM046.EXE <mark>SG</mark> CER046 B DSSBatch.V46 <enter></enter>	(to Model SORGHUM)

Maize Experiment file: MAIZE\MAPA_20AN45BN_WD\MAPA0001.SNX

*	EXP.DE	TAILS:	IRUP00	<mark>)01ri</mark> H	3AWP EX	PERIM	ENTS	3										
*	GENERA																	
a	PEOPLE																	
-	99																	
a	ADDRES	5																
-	99																	
@	SITE																	
В	icol																	
@	PAREA	PRNC) PLEN	PLDR	PLSP	PLAY	HAF	₹EA	HF	RNO	H	LEN	HZ	ARM.				
	-99	-99	-99	-99	-99	-99	-	-99	-	-99		-99		-99				
*	TREATM	ENTS								FA	ACT	OR I	LEVI	ELS-				
@	NROO	C TNAM	iE			CU	FL	SA	IC	MP	ΜI	MF	MR	MC	ΜT	ME	MH	SM
	11 0) Bicc	l_run1			1	1	0	1	1	0	0	0	0	0	0	0	1
	21 0) Bicc	l_run1			1	2	0	1	1	0	0	0	0	0	0	0	1
	31 0) Bicc	l_run1			1	3	0	1	1	0	0	0	0	0	0	0	1
	41 0 0) Bicc	l_run1			1	4	0	1	1	0	0	0	0	0	0	0	1
	51 0) Bicc	l_run1			1	5	0	1	1	0	0	0	0	0	0	0	1
	61 0 0) Bicc	l_run1			1	6	0	1	1	0	0	0	0	0	0	0	1
	71 0 0) Bicc	l_runl			1	./	0	1	1	0	0	0	0	0	0	0	1
	81 0 0) Bicc	J_runi			1	8	0	1	1	0	0	0	0	0	0	0	1
	91 0 0) Bicc	J_runi			1	9	0	1	1	0	0	0	0	0	0	0	1
	101 0 0) Bicc	l_runl			1	10	0	1	1	0	0	0	0	0	0	0	1
	101 0) BICC)1_runi			1	11	0	1	1	0	0	0	0	0	0	0	1
	121 0) Bicc)i_runi			1	12 12	0	1	1	0	0	0	0	0	0	0	1
	141 0) BICC	l run1			1	11	0	1	1	0	0	0	0	0	0	0	1
	141 0 0) BIGC)1_runi			T	14	0	Т	Т	0	0	0	0	0	0	0	T
							>	~_~	<u> </u>				· •	/~``	`~_^	~~~		```.
	381 0) Bicc	ol_run1			1	38	0	1	1	0	0	0	0	0	0	0	1
	391 0) Bicc	ol_run1			1	39	0	1	1	0	0	0	0	0	0	0	1
	401 0) Bicc	l_run1			1	40	0	1	1	0	0	0	0	0	0	0	1
	411 0) Bicc	l_run1			1	41	0	1	1	0	0	0	0	0	0	0	1

<Figure 6 > Maize Experiment file: MAIZE\MAPA_20AN45BN_WD\MAPA0001.SNX

Allow the program run to the end and DSSAT will produce:

MAIZE\MAPA_20AN45BN_WD\SUMMARY.OUT file with 2 identical columns (HWAM & HWAH) representing the Yield predicted by DSSAT.

- HWAM Harvest Weight At Maturity (measured in kg)
- HWAH Harvest Weight At Harvesting (measured in kg)

Copyright © 2021 Digitron Business Systems

	🕘 Summ	ary.OUT - No	tepad												- c) ×	<
F	ile Edit	Format V	iew Help														
2	l Ver.	Ver. 4.6.1.000 -release MAY 24, 2021; 19:57:11															^
					-	-											
1.					DRY W	EIGHT, YIE	D AND	YTELD C	OMPONENT	s					WATER		
	EDAT	ADAT	MDAT	HDAT	DWAP	CWAM	HWAM	HWAH	BWAH	PWAM	HWUM	H#AM	H#UM HIAM	LAIX	IR#M	IRCM	
	2009349	2010054	2010084	2010084	23	5646	1736	1736	3909	2382	0.0250	6945	104.3 0.308	2.0	0	0	
	2009349	2010052	2010082	2010082	25	4550	824	824	3726	1268	0.0262	3141	19.3 0.181	1.5	0	0	
	2009349	2010050	2010079	2010079	23	4929	1260	1260	3669	1764	0.0250	5040	94.2 0.256	1.8	0	0	
	2009349	2010054	2010084	2010084	25	5161	1020	1020	4141	1569	0.0262	3886	21.9 0.198	1.8	0	0	
	2009349	2010052	2010083	2010083	25	5093	875	875	4218	1347	0.0262	3335	22.0 0.172	1.6	0	0	
	2009349	2010052	2010082	2010082	25	5559	1751	1751	3807	2316	0.0262	6671	87.7 0.315	1.6	0	0	
	2009349	2010055	2010083	2010083	23	5344	2279	2279	3065	2898	0.0250	9116	169.8 0.426	1.6	0	0	
	2009349	2010053	2010082	2010082	25	4176	782	782	3394	1203	0.0262	2979	20.5 0.187	1.3	0	0	
	2009349	2010054	2010084	2010084	23	5854	1780	1780	4074	2504	0.0250	7120	112.7 0.304	2.1	0	0	
	2009349	2010054	2010082	2010082	23	6126	1764	1764	4362	2532	0.0250	7055	103.0 0.288	2.4	0	0	
	2009349	2010055	2010084	2010084	25	6320	1176	1176	5144	1769	0.0262	4479	56.7 0.186	2.1	0	0	
	2009349	2010058	2010089	2010089	23	6716	2855	2855	3861	3697	0.0250	11421	179.0 0.425	1.9	0	0	
	2009349	2010055	2010085	2010085	23	5015	1045	1045	3971	1650	0.0250	4171	55.6 0.208	1.7	0	0	
	2009349	2010053	2010081	2010081	23	5389	1905	1905	3485	2609	0.0250	7619	135.1 0.353	2.5	0	0	
	2009349	2010057	2010086	2010086	23	6776	2268	2268	4509	3147	0.0250	9070	251.5 0.335	3.0	0	0	
	2009349	2010053	2010082	2010082	25	4897	824	824	4073	1268	0.0262	3140	18.4 0.168	1.6	0	0	
1	2009349	2010057	2010085	2010085	25	6652	1384	1384	5269	2167	0.0262	5271	67.0 0.208	2.7	0	0	

<Figure 7> Summary.OUT showing Yield kg columns at Harvest

4. Use VS Code to Create a CAMDT Crop YIELD.txt file

Use VS Code to copy out one of the columns (HWAM or HWAH) and paste to a new file, save that file as ...WD\TEST_output\YIELD.txt

									·								_
× 1	ile Edit	Selection	on View	Go Ru	n Termina	al Help			Summ	nary.OUT - Visual S	itudio Cod	e					
ſЪ	≣ Sum	mary.OU	тх														
L Cr																	
	0.70	AIVIDT 72		2.40.35	ZUAIN43DIN	=	- Summ	ary.001								 	
\mathcal{Q}																	
-		ORY WE	EIGHT, YI	IELD AND	VIELD CO	OMPONENT	s					WATER					E
00		DWAP	CWAM	HWAH	HWAH	BWAH	PWAM	HWUM	H#AM	H#UM HIA	1 LAIX	IR#M	IRCM	PRCM	ETCM		
8		-99	7085	1905	1905	5240	2967	0.1025	1858	371.7 0.26	3.5	0	0	205	334		E
		-99	7370	1762	1762	5664	2488	0.1456	1211	242.1 0.23	3.3	0	0	221	349		
		-99	4026	-284	284	3794	450	0.1298	219	57.8 0.07	2.8	0	0	187	325		Ξ
D.		-99	5377	- e	0	5437	382	0.0000	628	127.9 0.00	3.3	0	0	166	304		Ξ
_		-99	7772	2696	2696	5135	3763	0.1535	1756	351.2 0.34	7 3.0	0	0	249	387		
E B	10	-99	5833	- 967	967	4925	1523	0.1631	593	122.5 0.16	5 2.7	0	0	255	396		Ε
	11	-99	7318	1155	1155	6226	2352	0.0652	1771	354.2 0.15	3 3.5	0	0	216	353		
	12	-99	7662	2238	2238	5485	3359	0.1400	1599	319.7 0.29	2 3.4	0	0	231	371		Ξ
	13	-99	7557	-434	434	7191	1318	0.0330	1314	262.9 0.05	3.6	0	0	226	357		
	14	-99	9503	3195	3195	63/1	4252	0.1839	1/3/	347.4 0.33	3.5	0	0	282	410		
		-99	8491	2966	2966	5582	4244	0.1583	18/4	3/4.8 0.349	3.3	0	0	257	393		
		-99	6220	-433	433	5849	836	0.1548	280	69.6 0.0/	3.4	0	0	264	396		
	17	-99	9301	1454	1454	/913	3306	0.0497	2925	585.0 0.15	3.0	0	0	248	383		
	18	-99	9085	22/9	22/9	5202	3450	0.1510	1503	300.0 0.25	L 3.0	0	0	285	409		
		-99	0210	2240	2240	2002	2204	0.1514	1464	290.7 0.29	,	0	0	2/2	410		
		-99	10100	21/0	21/0	7110	7020	0.1692	2126	407 0 0.25)).) 7) [0	0	340	4/0		
	21	-99	72/0	1292	1292	6031	2255	0.1407	1690	336 1 0 17	, 2.5 7 2.5	9	9	269	200		
		-99	0265	2222	2222	70051	2200	0.0705	1/95	207 0 0 24	, ,	9	9	200	399 101		
		_00	9950	2634	2230	6295	359/1	0.1307	1171	237.0 0.24	, ,,	9	a	2/2	421		
_	24	-99	10363	3682	3682	6745	5227	0.1546	2381	476.2 0.35	3.4	6	0	336	471		
		-99	9142	2149	2140	7070	3334	0.1485	1441	288.2 0.23	1 3.6	9	9	329	464		
		-99	9274	2764	2764	6570	4229	0.1562	1770	353.9 0.29	3 3.4	0	0	324	461		

<Figure 8> Copying DSSAT Crop Yield Output for Non-Rice Cereal

- i. Open the file ... WD\Summary.OUT using MS VS Code (see Figure 6 above)
- ii. Place cursor just before 1st digit of 1st data row values, i.e. Row 5 of HWAH column If the 1st row has 3 digit figure, select the space before the 1st digit so that total characters selected are always 4.
- iii. Press Shift + Ctrl + Alt and press Right arrow (\rightarrow) to select all 4 characters if the 1st figure
- iv. Whilst still pressing Shift + Ctrl + Alt, use down arrow (↓) to select all the figures of column HWAH
- v. Release keys and Press Ctrl + C to copy the selected column figures
- vi. Go to File --> New File and then Press Ctrl + V to paste the column values into a new file
- vii. Go to File --> Save As and Select the ...WD\TEST_output folder and type the file name as YIELD, then press <Enter>
- viii. You now have the YIELD.txt file for current Crop (Maize, Sorghum, etc.) for 20AN-45BN

5. Running Crop Modelling for 45AN-20BN tercile

a. Repeat from Section 2 to 3 above by Copying ...\RICE\MAPA_45AN20BN_WD to ...**MAIZE**\ folder for the same Weather station but ensure that params_TEST.txt is changed correctly to:

<Figure 9> Changing Tercile from 20AN45BN to 45AN20BN in parameters.txt file

b. Repeat from Section 2 to 4 above for the other crop (e.g. **SORGHUM**) but switching ...WD to ...\SORGHUM\MAP_20AN45BN_WD for the 20AN-45BN tercile

AND

...\SORGHUM\MAP_45AN20BN_WD for the 45AN-20BN tercile

6. Generate CAMDT Crop Yield Graphs

- a. Run <py CAMDT_2017_0310.py> from CMD SHELL Prompt in current ...WD folder of desired crop and tercile or double-click CAMDT_2017_0310.py from Windows Explorer in current desired ...WD folder.
- b. Setup/fill in simulation parameters to resemble those in current crop's parameter file: ...WD\TEST_output\parameter_TEST.txt, fill in scenario (TEST fields and click on the scenario <Write button>)
- c. Don't click on the green Run DSSAT button
- d. Click the Boxplot button and save the graph in \MAIZE\MAPA_20AN45BN\Graphs\ folder
- e. Repeat the same (d.) for Exceedance curve)
- f. Repeat (b.) to (e.) in this section for $MAIZEMAPA_45AN20BN$

<Figure 10a> Mozambique MAPAI RICE Boxplot and Exceedance Curve at 20AN-45BN for JFM 2009-2010

<Figure 10b> Mozambique MAPAI RICE Boxplot and Exceedance Curve at 45AN-20BN for JFM 2009-2010

<Figure 10c> Mozambique MAPAI MAIZE Boxplot & Exceedance Curve at 20AN-45BN for JFM 2009-2010

<Figure 10d> Mozambique MAPAI MAIZE Boxplot & Exceedance Curve at 45AN-20BN for JFM 2009-2010

g. Repeat Section 5 above for the other crop (e.g. SORGHUM) but switching ...WD to: ...\SORGHUM\MAP_20AN45BN_WD, for the 20AN45BN tercile

AND

...\SORGHUM\MAP_45AN20BN_WD, for the 45AN20BN tercile

and CULTIVAR from RICE to SORGHUM in param_TEST.txt for both terciles:

!Planting distribution: Hills (H), Rows (R), Broadcast (B)
PLDS: R
!Planting population at seedling, plant/m2
PPOP: 10
!Planting population at emergence, plant/m2
PPOE: 10
!Planting Row spacing, cm
PLRS: 70
!Row Direction , degrees from North
PLRD: 0
!Planting depth , cm
PLDP: 4
.
.
.
VAR_num: PHPS01 --> IB0055;
VAR_name: PSB Rc82 --> PIONEER 850
.
.

<Figure 11> Changing CULTIVAR details from RICE to SORGHUM, in parameter.txt file

END OF USER GUIDE 3

