Plasma N2: Emissions saving through production of low cost Fertilizers, using air as a raw material

- Dr. Stella Kabiri
- Senior Research Officer
- Mukono Zonal Agricultural Research and Development Institute,
- National Agricultural Research Organization (NARO)
- Uganda

CR4D Closing Workshop June 21st-June 23rd, Nairobi, Kenya 2021

Carbon dioxide (CO₂) is a heat-trapping (greenhouse) gas

Source: climate.nasa.gov

- Carbondioxide levels in the atmosphere are at the highest in 650,000 years.
- CO₂ released in the atmosphere through
 - deforestation and
 - burning fossil fuels,
 - respiration
 - volcanic eruptions

<u>Human activities have raised CO₂ in the atmosphere</u> by 48% above pre-industrial levels found in 1850

Global Temperatures are 1.25°C above preindustrial levels

Turning up the heat

Temperatures in 2020 were the hottest on record, tying levels set in 2016. Temperatures were about 1°C over a baseline of 1951-80 average temperatures, or about 1.25°C above preindustrial levels.

TIME SERIES: 1884 TO 2020

Data source: NASA/GISS Credit: NASA Scientific Visualization Studio

 \searrow

ukaid

WISER

Loss of Sea ice

 TIME SERIES: 1979-2020
 2020

 Data source: Satellite observations.
 2020

 Credit: NASA Scientific Visualization Studio
 1000

 Image: Statellite observations of the studio
 1000

- Arctic sea ice has melted at a rate of 13.1% per year
- Ice sheets lost
 - 150 billion metric tons lost in Antarctica
 - 278 billion metric tons lost in Greenland
- Sea levels have risen by 3.3 mm per year

 \sim

ukaic

<u>Alarming Environmental concerns of the Fertilizer</u> industry

Photo By Alex Wierbinski

Haber-Bosch Ammonia synthesis

- Leading CO₂ emitter
 - Emits over 830 mega tons of CO₂
 - 42% of the total industrial process emission of CO₂
 - Consumes,
 - 1-2% of the world's total energy production
 - 3-5% of the world's total natural gas output

Haber-Bosch ammonia synthesis processes, the necessary Evil

Population growth - Haber-Bosch ammonia synthesis process Relationship

⁽Source: Royal Swedish Academy of sciences, 2010)

- Feeding an increasing world population is a huge challenge.
- Forecasts say there will be almost 10 billion people in 2050.
- Artificial fertilizers feed the world
- Nitrogen is one of the three main macronutrients used by plants to grow (next to phosphorus and potassium).
- In 2015, one in every two humans ٠ was fed by food that was cultivated using nitrogen-based fertilizer,

United Nations

Fertilizer usage in Uganda vs. Global

ukaid

Uganda: The world's most expensive fertilizer market

The Ugandan farmer pays double the sum paid by farmers in USA and Europe

Using Plasma technology to feed the world

Research Team

- At the National Agricultural Research Organization (NARO-Uganda
- Eindhoven University of Technology (TU/e), the Netherlands
- We built a state-of-the-art plasma technology to make cheap fertilizer for small farmers.
- It is a small powered plasma-plant that produces nitrogen-based liquid fertilizers using only sun, water and air
- The plant is easy to set up, sustainable and very efficient

What is plasma?

• Plasma

- A hot ionized gas; Positively charged ions = Negatively charged electrons.
- The characteristics of plasmas are different from ordinary neutral gases
- Plasmas are considered a distinct "fourth state of matter."

The Northern Lights are an example of a plasma you can see. (National Geographic)

Nitrogen fixation in Nature

- The majority of Earth's atmosphere (78%) is atmosphere Nitrogen making it the largest source of nitrogen
- However, atmospheric nitrogen is not readily available to plants.
- The nitrogen cycle is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmosphere, terrestrial, and marine ecosystems.
- the nitrogen cycle includes
 - o Fixation,
 - Ammonification,
 - Nitrification, and
 - o Denitrification

CREDITS: https://commons.wikimedia.org/wiki/File:Nitrogen_Cycle.svg

The Africa

Haber Bosch process vs Plasma assisted Nitrogen fixation

United Nations

Economic Commission for Africa

Haber Bosch Ammonia synthesis

Reaction of nitrogen with hydrogen Temp at **450,600°C** and **150-**

350 bar in the presence of a catalyst.

How it works

Plasma Reactor

The Plasma system is switched on when the sun is shining.

Does not use
 fossil fuels but runs
 solar energy

Efficiency of the Plasma Reactor in producing Nitrates and Nitrogen from air

- Nitrate levels increase with time of running the plasma reactor (P<0.001)
- Total Nitrogen was highest at 5 and 6 hours (P<0.001)

Improving the efficiency of the Plasma Reactor

Response of Maize (Chlorophyll content) to Plasma fertilizers

- Plasma fertilizers performed similar to ammonium nitrate and urea (*P*<0.001)
- Were significantly different from the control and NPK (P<0.001)

UKaic

Response of Maize (height) to Plasma fertilizers

- Plasma fertilizers performed similar to other fertilizers (*P*<0.021)
- Were significantly different from the control (P<0.021)

The African

WISER

Response of Maize (Biomass) to Plasma fertilizers

• Plasma fertilizers performed similar to other fertilizers and significantly different from the control (P<0.033)

WISER

Research Team

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY	Prof. Fausto Gallucci Dr. Sirui Li	*	Cape Coast University	Dr. Francis Tetteh
	Prof. Volker Hessel			
NELSON MANDELA	Prof. Darelle Van Greunen Prof. Paul Watts		Fraunhofer	Dr. Filipe Soares
\$ NARO	Dr. Stella Kabiri			Dr. Jurgen Lang

NEXT STEPS 1

- At present the cost of the mini-plant is still quite high
 - 40,000 Euros
 - Eindhoven University of Technology (TU/e), the Netherlands spin-off <u>4th State</u>

Technologies to bring the mini-plant to the market.

- Improve the efficiency of the plasma reactor
- One day farmers in Africa will be able to buy their own fertilizer unit, individually or as a village
- Demonstrates a way out of industrial processes responsible for Global warming.

NEXT STEPS 2

- Develop a Research team that is dedicated to Negative GHG Emissions in Plant Nutrition by
 - Capacity building (PhD, MSc,

BSc)

- Exploring new fertilizer production paradigms such as
 - Development of Nano-fertilizer blends from Plasma fertilizers

Nano particles are from plant cellulose from agricultural waste

Over-fertilizing is reduced

Nutrients do not leach preventing wastage and pollution

Nano particles from banana peelings

Source: Hussein et al., 2019

Nano particles from banana peelings containing fertilizers

Source: Lohmousavi et al., 2020

Acknowledgements

WISE

Weather and Climate Information Services for Africa

A Long term EU-Africa research and innovation Partnership on food and nutrition security and sustainable AGRIculture

Thank you for Listening

Before CR4D

After CR4D

Mission of the lab: 'Negative GHG Emissions in Plant Nutrition'

 \searrow

ukaic

