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1. Background to the fellowship project

 The demand for accurate hydroclimate information has been increasing across the world

The need is greater among many data poor climate risk-prone developing countries

Currently, there is a unique opportunity for researchers and practitioners in data poor regions due to

innovation in the state-of-the-art techniques in HC data production (AghaKouchak et al., 2015)

There are ample gridded HC data products with a global coverage at multiple spatial temporal

resolutions freely available for researchers and practitioners

 However, the accuracy and representativeness of most global datasets are quite different from place

to place and between data products

 Most of the data have been tested and being widely used in many developed countries

 The application of these global scale data products in the developing countries very low and at its

early stage for several reasons



 The accuracy of  most data products are not tested and well known 

 the quality of data are different for different applications

Lack of awareness on their availability 

 Lack of knowledge & skill to use and analyse gridded data products

 Some of them are less accurate at a given region 

 Hence, there is an urgent need to produce representative quality data, or explore globally available data products, 

evaluate their reliability for specific application, and communicate results both for users and producers 

 On the other hand, many drought monitoring has been developed following the emergence of multiple earth 

observation data products

 SPI PDSI, SPEI, SRHI, SSI… need to be tested for African region

Con…



objectives

 Identify geospatial datasets and drought indices that can have better 
performance in Ethiopia; 

 Identify the large scale atmospheric driver of drought development in 
Ethiopia by analyzing the coupled spatiotemporal drought variability and 
large scale climate oscillation systems; 

 Evaluate the performance of geospatial datasets in simulating the coupled 
spatiotemporal drought variability and large scale climate oscillation 
systems, and

 Fellows and other young researcher capacity building through training and 
networking.



3 Methodology

underlying assumption
Drought can be defined as a temporary reduction of water availability compared to the normal values 

extending along a significant period of time and over a large region.

 From disciplinary perspective drought can be classified into 4 categories: 1) Meteorological, 2 agricultural, 
3) hydrological & 4) socioeconomic 

Meteorological  drought is one of the primary causes to the other drought types

 The impacts of drought can be determined by its frequency, magnitude, duration, and geographical 
coverage

 Hydrometeorological indicators and indices are commonly used for drought monitoring and forecasting 
works



Data type and sources

 20 precipitation data
No. Dataset Record length Temporal resolution Spatial resolution Data category 

Gauge interpolated data    

1 CPC 1979-present Daily 0.5° Gauge 

2 CRU 1901-present Monthly 0.5° Gauge 

3 GPCC 1901-present Monthly 1° Gauge 

4 PREC/L 1948-present Monthly 1°  Gauge 

Satellite only data     

5 AIRS 2003-present Monthly 1° Satellite 

6 CHIRP 1981-present Monthly 0.05° Satellite 

7 PERSIANN 2001-present Monthly 0.25° Satellite 

8 PERSIANN-CCS 2003-present Monthly 0.04° Satellite 

Reanalysis data     

9 ERA5 1979-present Monthly 0.28° Reanalysis 

10 FLDAS 1982-present Monthly 0.1° Reanalysis 
11 GLADS 1979-present Monthly 1°  Reanalysis 
12 MERRA2 1980-present Monthly 0.66°х0.50° Reanalysis 

Multisource data     

13 ARC2 1996_present Daily/monthly 0.1° Satellite-gauge 

14 CHIRPS 1981-present Daily 0.05° Satellite-gauge 

15 GPM 2001-present Monthly 0.1° Satellite-gauge 

16 PERSIANN_CDR 1983-present Monthly 0.25° Satellite-gauge 

17 TAMSAT 1983-present Monthly 0.05°  Satellite-gauge 

18 RFE2  Monthly 0.1° Satellite-gauge 

19 TerraClimate 1958-present Monthly 0.04°  Satellite-gauge 

20 TRMM 3B43 1998-present Monthly 0.25°  Satellite-gauge 

Reference data      

1 ETH-SaGa 1983-present Monthly 0.04° Satellite-gauge 

2 In-situ stations 1983-present monthly  Gauge (126) 
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 4 PET, 2 RH, 4 Soil moisture & 1 vapor pressure deficit

No. Dataset Record length Temporal 

resolution 

Spatial 

resolution 

Variable type Data category 

PET data 

1 CRU 1901-present Monthly 0.5° PET & Prec.  Gauge interpolated  

2 ERA-5 1979-present  ~0.28° PET & Prec.  Model simulation 

3 GLDAS-Noah 2000-present Monthly 1°  PET & Prec.  Model simulation 

4 TerraClimate 1958-present Monthly 0.04°  PET & Prec.  Multisource 

Soil moisture data 

1 CPC 1979-present Monthly 0.5° Soil moisture Gauge interpolated 

2 ERA-5 1979-present  ~0.28° Soil moisture  Model simulation 

3 FLDAS 1982-present Monthly 0.1° soil moisture  Model simulation 

4 MERRA-2 1980-present Monthly 0.66°х0.5° Soil moisture  Model simulation 

Relative humidity data 

1 AIRS 2002-present Monthly 1° Relative humidity Satellite 

2 ERA-5 1979-present  ~0.28° Relative humidity Model simulation 

VPD 

1 TerraClimate 1958-present Monthly 0.04°  VPD  Multisource 

Reference data 

1 In-situ stations 1983-2018 Monthly point Precipitation In-situ 

2 ETH-SAGA 1983-present Monthly  Precipitation Gage-satellite 
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 4 Sea surface temperature datasets for teleconnection analysis
 Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST, Rayner et 

al., 2003) 1°x1°

 NOAA’s Centennial insitu Observation-Based Estimates (NOA_ COBE, Hirahara et 
al., 2014) 1°x1°

 NOAA’s Extended Reconstructed Sea Surface Temperature (NOAA_ERSST, Smith 
et al., 2008) 2°x2°

NOAA’s Optimum Interpolation Sea Surface Temperature (NOAA_OISST, Reynolds 
et al., 2002) 1°x1°
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 Criteria to select these datasets:
Spatial resolution (<1°)

 Experience in the other part of the world

 Quality (not has missing data)

 Data format and ease of accessibility

 Methods used to detect drought condition 
Standardized Precipitation Index (SPI; McKee et al., 1993)

Standardized Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano et al., 2012)

Standardized Soil moisture Index (SSI; Hao and AghaKouchak, 2013)

Standardized Relative Humidity Index (SRHI; Farahmand et al., 2014) 

Standardized Vapor Pressure Deficit (SVPD; Behrangi et al., 2015)
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Criteria to select these drought indices:
 Wider application both in research and operational activities

 Comparability

 Some of the indices (SPI and SPEI) recommended by WMO

 Some of the indices (SHI & SVDI) acknowledged for their skill of early  
drought detection

 Drought indices were generated at 3- and 12month and for the 
spatially different 3 wet seasons (MAM, JJAS and SON) 

Results provide positive and negative values at monthly time scales, 
& -1 is a threshold to define drought months 



Evaluation methods

Visual comparison between the reference and studied data products 
for selected major drought episodes (1984, 2002, 2009, 2015) and for 
drought frequency 

 Correlation between drought indices of the reference and studied 
data products 

 Critical success Index (CSI) method. It considered only SPI values <=-1 
between the reference and studied data products & has four 
performance indicators:











Results

Drought detection performance for 20 precipitation data products

 Most datasets showed inconsistent and weak performance in capturing 
major drought events Figure1_Major_drought_events.docx

Data that showed better performance compared to the other 
CHIRPS, FLDAS, CHIRP, TAMSAT and TerraClimate better for 1984

CHIRPS, ERA5 ARC2, and RFE2 better in capturing the 2002 drought

CHIRPS, ERA5, FLDAS, AIRS, GPM, the three PERSIANN data and TRMM better in 
capturing the 2009 drought

CHIRPS, ERA5, FLDAS, CHIRP, GPM, PERSIANN/CCS, PERSIANN/CDR, TAMSAT and 
TRMM better in capturing the 2015 drought

Figure1_Major_drought_events.docx
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 Few data products able to capture drought frequencies:
 CHIRPS followed by FLDAS, GPCC, ARC2, GPM, PERSIANN/CCS, PERSIANN, 

RFE and TRMM attempted to represent the 3-month drought 

 Only 3 data products (CHIRP, CHIRPS and PERSIANN/CDR) able to represent 
the 12-month drought frequencyFigure2_3&12-
month_drought_frequency.docx

 Correlation and CSI values showed better performance for 3-month than 12-
month time scale drought events

 Spatial pattern of POD, MR, FAR,& CSI were mapped for both 3- and 12-
month drought. Eg., CSI distribution for 3-monthFigure-3_CSI_SPI3.docx

Figure2_3&12-month_drought_frequency.docx
Figure-3_CSI_SPI3.docx
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Performance result for SPEI, SSI, SRH, SVDI

 Most data and drought indices showed inconsistent and poor 
performance in all measures 

Example:
 Performance to capture major drought events, 

Figure4_SPEI_major_drought.docx,

Figure5_SSI_major_dorought.docx

Figure6-RHI_SVDI_major drought.docx

 Performance in representing drought frequency Frequency_SPEI_SSI_SHI.docx

All the four CSI measures for SPEI, SSI and SRH are lower compared to the 
SPITable_2.docx

Figure4_SPEI_major_drought.docx
Figure5_SSI_major_dorought.docx
Figure6-RHI_SVDI_major drought.docx
Frequency_SPEI_SSI_SHI.docx
Table_2.docx


Cont..

 SRHI and SVDI did not show better performance in capturing drought 
intensity and onset earlier than SPI for wet seasons. Example:

 MAM drought in 2009 and 2011Figure7_MAM_SPEI_2009_2011.docx, 
Figure8_MAM_SRHI_SVDI.docx

JJAS drought in 2015Figure9_SPEI_JJAS_ 2015.docx, Figure10_JJAS_SHI_SVDI_ 
2015.docx

SON drought in 2003 and 2016Figure11_SPEI_OND_2003&2016.docx, 
Figure12_OND_SRHI_SVDI_2003&2016.docx

Figure7_MAM_SPEI_2009_2011.docx
Figure8_MAM_SRHI_SVDI.docx
Figure9_SPEI_JJAS_ 2015.docx
Figure10_JJAS_SHI_SVDI_ 2015.docx
Figure11_SPEI_OND_2003&2016.docx
Figure12_OND_SRHI_SVDI_2003&2016.docx


Teleconnection between SPI and global sea surface temperature for three wet seasons in Ethiopia, and the 
consistency of four SSTs

 Teleconnection analysis was made for 3 spatially different rainfall 
season over Ethiopia
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 Correlation analysis was conducted at zero, one month, two months and 
three months lag-times

 The result of correlation at zero lag-time is presented here as the 
significance of correlation gradually decreased with increased lag-time for 
all SST products and for all wet seasons

The general patterns and strength of correlation between SPI and SST 
more or less the same for most SST data and 

JJAS season, statistically significant negative correlation with SST at central 
and eastern parts of Pacific Ocean, and statistical significant negative 
correlation with SST at the western part of Pacific Ocean. 
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Some possible reasons for poor performance for most data and performance 
variation among data products

 Variation in spatial resolutionFigure13_correlation_CSI.docx

 Declined number of observation considered for interpolation 

 Variation in methodologies and algorism in estimating weather data 
from satellite and in simulating model products

 Absence of in-situ data sets used for calibration and validation over 
Ethiopia in estimating RH from satellite observation

Figure13_correlation_CSI.docx


Activities accomplished related capacity building and networking

 Acquired new skill  and experience in data mining from big global 
data sources, big data management & software packages (CDT, CDO 
and R) 

 Capacity building for 15 selected researchers: training on two 
software packages (CDT, CDO and SWAT)

 Two workshops and one training programmes were implemented

 Networks  network with, AAU, DMU, NMA, AAS, ICPAC, and 
University of Nairobi 



Conclusion

 Three (CHIRPS followed by FLDAS & GPCC) precipitation datasets 
have better performance compared to the others 

 Almost all global PET datasets can provide good SPEI value if used 
with Ethiopian gridded data

 FLADS followed by ERA5 soil moisture data are relatively better than 
the other soil moisture data in estimating drought phenomena 

 SRHI and SVDI did not show better and consistent performance in 
capturing drought onset earlier than SPI 
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 The result also implies the need that we African should a lot to have 
representative and reliable hydroclimate data  

Two papers were produced and submitted to journal article for 
publications

Two more papers are under preparation



Thank you for your attention!


